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Abstract

This paper analyzes strategic interactions between lying and lie-detection, and studies the opti-

mal design for costly lie-detection and its effectiveness. An informed sender wants to persuade an

uninformed receiver to take high actions but the receiver wants to match the action with the true

state. The sender makes a claim about the true state and the receiver decides whether to incur

a cost to inspect the truthfulness of the claim. I show that lie-detection technology is useful in

improving the receiver’s welfare if and only if the cost of lie-detection is sufficiently low and prior

expectation of the state is not too high. The receiver-optimal design of admissible claims leads to

an equilibrium with three intervals in the state space, where types in the top interval are induced

to make precise and truthful claims about the state, which are mimicked by types in the bottom

interval and randomly inspected, while types in the middle interval make a truthful but vague claim

that is never inspected. Compared to state verification, lie-detection is shown to be more beneficial

to the receiver because it provides incentives for moderate and high types to be truthful. This sug-

gests that fact-checking of politicians’ claims is effective in holding them countable and deterring

them from lying.
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1 Introduction

In many situations, an informed party is tempted to misrepresent information when communicating

with an uninformed party. Politicians hope to impress voters by exaggerating their past achievements

and future policy goals; Companies want to convince consumers to believe that their products are

better than what they actually are; Suspects who have committed crimes often refuse to plead guilty.

Such tension is widely studied in the literature with various resolutions. Contract theory assumes the

uninformed receiver can commit to a menu of outcomes corresponding to the informed sender’s report

of his private information. The cheap talk literature assumes no such commitment but the sender and

the receiver share a degree of common interest in how they would want to respond to the sender’s

private information. In both cases, lying by the sender about his private information does not occur

in equilibrium.

This paper introduces a theory of lying in cheap talk communication where the receiver has access

to a costly lie-detecting technology. The informed sender is opportunistic and the uninformed receiver

is skeptical. Claims made by the sender are statements regarding the state. Some of them emerge in

equilibrium as lies and others as truth 1. Lie-detection is a broadly used technology in our daily lives.

For instance, skeptical voters might go online to fact-check a politician’s claim. The innovation in this

paper is that lies emerge as equilibrium claims about the state in the face of costly lie-detection. To

my knowledge, this is the first paper that develops a framework allowing strategic interaction between

lying and lie-detecting, and analyzes tensions between the sender’s incentive of lying and the receiver’s

incentive of inspection. This assumption is motivated by the observation that not all claims are treated

equally by an uninformed party. Oftentimes some claims are more suspicious than the others and draw

more attention in inspecting them. For instance, if a health product company claims their new drug

is proven to reduce any cancer risk by 99 percent, potential consumers might be skeptical and search

if such claim is backed by any trust-worthy, independent studies; but if the company makes a mild

claim that the drug strengthens immune system, consumers might just take the company’s word and

do not bother checking it.

The main objective of this paper is to study the “optimal design” for costly lie-detection and

its effectiveness in improving the quality of communication. The optimal design codifies the set of

1Sobel (2019) points out that lying depends on the existence of accepted meanings for messages. In this paper,

a sender’s message has the following accepted meaning: “The true state is within Θ”, where Θ is some subset of the

state space. Naturally, the sender is lying if the true state is not one of the states in Θ.
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claims about the state, truthfully or falsely, that are made in the best equilibrium for the uninformed

receiver in a cheap talk game with costly inspection. Several major questions regarding lie-detection

are addressed:

(1) Under what conditions is lie-detection technology helpful in improving the welfare of the uninformed

party?

(2) What are the best lie-detection outcomes for the uninformed party?

(3) How do changes in the technology, in particular, the information generated from an inspection,

affect the welfare of the uninformed party?

To study these questions, I analyze a framework with endogenous lying and lie-detection. An

informed sender prefers a higher action by an uninformed receiver to a lower action independent of

the true state, while the receiver has a quadratic loss function and wants to match the action with

the true state. The sender communicates with the receiver by making a claim modeled as a subset of

possible states; a claim is truthful if it includes the true state and is a lie otherwise. Before taking

the payoff relevant action, the receiver has the option to incur a cost to inspect the truthfulness of

the claim. The list of claims made in an equilibrium that maximizes receiver’s expected payoff is an

optimal design for costly lie-detection.

Lie-detection technology improves the receiver’s welfare only if lying occurs in equilibrium. If the

sender never lies, the receiver has no incentive to inspect the sender’s claims; If there is no inspection,

babbling is the only equilibrium as the sender and the receiver share no common interest. I show that

there exists equilibrium where lying and lie-detection occur if and only if inspection cost is sufficiently

low and prior expectation of the state is not too high. The threshold for prior expectation increases

as inspection cost decreases and converges to the upper bound of the state space as inspection cost

goes to zero. Intuitively, this result comes from the conflict between the sender’s incentive to lie and

the receiver’s incentive to inspect. Liars aim to convince the receiver that they are better than the

average (prior expectation) when they get away with the lie. If the prior expectation is too high, this

can happen only when a small number of liars mimic a large number of truth-tellers, but then the

claim is not worth inspecting because the sender is too likely to be truthful. This result echoes a

common perception that lie-detection is effective when the sender is suspicious, in the sense that there

is a substantial difference between the receiver’s prior belief and the belief preferred by the sender. For

example, the police usually conduct an interrogation only if they believe that the suspect is likely to

have committed a crime. When the sender is likely to be “innocent”, there is no cost-effective way to
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separate lies from truths.

Even though full revelation is achievable using lie-detection technology, it is neither sequentially

rational nor ex-ante optimal for the receiver because some claims are not worth inspecting. The

receiver’s benefit from lie-detection can be decomposed into two components. First, lie-detection

generates a direct information value by distinguishing liars from truth-tellers which generally provides

information about the true state. Second, the sender might stay honest in fear of being caught lying.

Therefore, the possibility of lie-detection creates a threat that deters potential liars and facilitates

information transmission. This is called the indirect deterrent effect. I show that under the optimal lie-

detection policy, the direct information value of inspection is completely offset by the cost of inspection.

Improvement of the receiver’s ex-ante payoff is driven by the deterrent effect: the receiver is able to elicit

information from the sender due to the credible threats of lie-detection. This is perhaps surprising

as one might expect an optimal lie-detection design should allow the receiver to acquire as much

information as possible. Such intuition turns out to be incorrect because excess amount of information

acquired from inspection indicates that the design induces sender to lie too often, and costly inspection

takes place more frequently than necessary. This suggests that lie-detection technology better serves

as a mean of deterrence than a mean of information acquisition.

The receiver’s ex-ante payoff depends on the degree of information transmission facilitated by the

indirect deterrence, which is affected by the set of claims available to the sender. Therefore, an optimal

lie-detection design involves not only a contingent plan of inspection, but also a set of admissible claims.

I show that the optimal design is characterized by three intervals which partition the state space. The

sender makes truthful claims when the true state is in the high interval (good types), lies and mimics

the high claims when the true state is in the low interval (bad types). These high claims are randomly

inspected. In fear of being caught lying and perceived as bad types, the sender in the intermediate

interval (moderate types) is deterred from mimicking the high claims. These moderate types pool at

a vague yet truthful claim which is not inspected by the receiver. It is optimal for the receiver to

give the sender an option of being vague because precise claims require inspections to sustain, while

moderate types are not distant enough with each other to justify the cost of inspection. Technically

speaking, it is always optimal to pool an interval of types to a single claim and leave it uninspected

because the conditional variance of a small enough interval is smaller than the inspection cost.

If the density of the bottom half of the prior distribution is concentrated toward the center, then

the optimal design corresponds to a so-called decreasing mimicking mechanism, where the inspected
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high claims are precise, meaning that the optimal set of admissible claims consists of a vague claim

that indicates moderate types and a continuum of precise high claims. The mimicking is decreasing in

the sense that liars with lower types mimic truth-tellers with higher types. Inspection probabilities of

those claims are chosen so that liars are indifferent between all equilibrium lies. Since liars who make

higher claims will be punished by worse posterior beliefs upon lie-detection, the inspection probability

need not be increasing in the level of claim. In practice, remaining silent can be interpreted as the

vague claim which induces a moderate belief from the receiver. Any claims in attempts to induce

better beliefs are required to be precise and will be inspected stochastically.

I study the effect of inspection technology on the receiver’s welfare by comparing lie-detection

with state-verification. There are substantial differences between lie-detection and state-verification.

Under state-verification technology, an inspection reveals the true state of the world. There will be

no uncertainty upon inspection. Under lie-detection technology, an inspection returns a binary signal

on the truthfulness of the sender’s claim. Information learned from an inspection is endogenously

determined by the claim made by the sender. Practically, state-verification is a hard skill which

requires the receiver to be able to acquire knowledge about the true state, which might not be feasible

in some situation. For example, there might not be any objective evidence in the crime scene that

provides further information about whether a suspect has committed to the crime. On the other hand,

lie-detection can be a soft skill. A competent detective might be able to spot a lie told by the suspect

using various interrogation tactics. Studies in psychology and cognitive science have shown possibilities

of detecting lies using methods such as asking questions that raise cognitive load (Vrij et al., 2011),

measuring brain activities (Christ et al., 2008) and reading micro-expressions (Porter and Ten Brinke,

2006), with nearly 70 percent accuracy (Hartwig and Bond, 2014) and 85 percent accuracy for trained

interviewers (Hartwig et al., 2006).

Even if state-verification is feasible, lie-detection technology can yield a higher benefit to the

receiver. Assuming the same unit cost of the two technologies, I show that the receiver’s welfare

is higher under optimal lie-detection design compared with optimal state-verification design. This is

because revealing the true state upon inspection removes any strategic uncertainty that can serve as

a threat of punishment to potential deviators. Since state-verification leads to an accurate assessment

of the true state, there is no credible punishment for the liar thus sender always has the incentive to

exaggerate the state to “try his luck”. As a result, the deterrence effect is eliminated under state-

verification technology and there will not be any informative communication. This result sheds light
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on the optimal approaches of fact-checking as a tool to combat misinformation in politics. The internet

has enabled the public to more easily verify politicians’ claims using fact-checking websites such as

FactCheck.org and PolitiFact. A question regarding the socially desired mission of these organizations is

whether they should focus on presenting verdicts on politicians’ statements (lie-detection) or educating

the public about policy-related issues (state-verification). The latter is more informative as verdicts

on politicians’ statements can be derived from knowledge in policy-related issues. An argument for

the former is that simple verdicts cost less time to read and are easier to comprehend, compared

with the complex policy-related issues. Another argument for the former is that targeting politicians’

statements hold them accountable and deter them from lying. Some studies find evidence that fact-

checking reduces lying behaviors of politicians (e.g. Nyhan and Reifler (2015); Lim (2018)). This paper

provides a theoretical ground for the deterrence argument and shows that the public can be better off

under lie-detection in spite of the ignorance of details in policy-related issues.

The remainder of the paper is organized as follows. Section 2 reviews the related literature on

lying and communication. Section 3 presents the model. Section 4 derives necessary and sufficient

conditions for the existence of welfare-improving lie-detection mechanisms. Section 5 characterizes the

optimal lie-detection mechanism. Section 6 compares lie-detection with state-verification. Section 7

concludes. The proofs are relegated to the Appendices.

2 Related literature

My work is mostly related to the literature of strategic communication with lie-detection. Balbuzanov

(2017) analyzes a cheap talk model akin to the setup in Crawford and Sobel (1982), with the addition

that a lie of the sender will be detected with an exogenous probability. He shows that given intermediate

probability of lie-detection and sufficiently small bias, fully revealing equilibria exist. Dziuda and Salas

(2018) study a pure persuasion game with the same lie-detection technology as Balbuzanov (2017) and

show that certain refinement criteria lead to a unique equilibrium where moderate types and high

types stay honest and low types lie to imitate high types. My findings in optimal mechanisms echo

findings from Dziuda and Salas (2018) that moderate types do not exaggerate their types to avoid being

mistaken as the low type liars. The key difference between this paper and previous literature is that

this paper models lie-detection as a decision of the receiver, where the probability of lie-detection can

be chosen conditional on the sender’s claim. This allows an analysis of tensions between the sender’s

incentive of lying and the receiver’s incentive of inspection. Under different sets of permissible claims,
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the resolutions of such tensions result in different degrees of inspection and information revelation,

and hence different payoffs. Therefore, this leads to a non-trivial design problem on the optimal set

of permissible claims. Jehiel (2019) analyzes an interesting multi-round cheap talk environment where

lie can be spotted from the inconsistent messages of a forgetful liar who cannot remember the content

of the lie he has told.

Another strand of literature study strategic communication with lying cost for the sender. Kartik,

Ottaviani and Squintani (2007) study a strategic communication environment where the sender is

upwardly biased and misrepresenting information is costly. They show that when the state space is

unbound above, fully separating equilibrium exists in which sender lies and uses inflated language.

Kartik (2009) studies a similar environment and shows that when state space is bound above, there is

some pooling on the highest message and the degree of information revelation depends on the intensity

of lying cost. While lying behaviors arise in equilibrium in both their models and my model, the

natures and interpretations of lies are quite different. In my model, lies serve as disguises to confuse

the receiver. Liars try to mimic the types they claim to be and the receiver cannot tell them apart

without an inspection. In their models, lies serve as inflated languages. The sender tells lie to avoid

being mistaken as a worse type and a strategic receiver does not confuse a liar with the type he

claims to be. An alternatives interpretation of the models in Kartik, Ottaviani and Squintani (2007),

alongside other related works (e.g. Ottaviani and Squintani (2006); Chen (2011)) is that a proportion

of receivers naively believes sender’s message. The coexistence of strategic and naive receivers imposes

an endogenous cost for the sender to overly exaggerate the state since the naive receivers will take

it at face value, which is not preferred by a sender whose bias is not too large. In the equilibria of

their models, lies are chosen by the sender to balance the induced beliefs of two groups of receivers

who interpret messages differently. In my model, lies are chosen to mimic the corresponding truthful

senders and confuse the receiver.

For a broader discussion on the role of lying in strategic interactions, Sobel (2019) establishes a

general framework of lying with various applications. My model adopts the same definition of lying as

in Sobel. His framework does not incorporate the possibilities of lie-detection.

3 The Model

There are a decision-maker (DM) and a sender. DM has to make a decision, but only the sender

has the relevant information. Sender privately observes the state of the world, θ, which is distributed
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according to a continuously differentiable c.d.f. F over the normalized state space Θ ≡ [0, 1] , with

associated density f . θ is also referred to as the sender’s type. For example, θ might represent the

quality of the advertised product or the severity of crimes committed by a suspect.

Message: The sender sends a message m ∈M to DM, whereM is the set of all measurable subsets

of the state space Θ. A message sent by the sender is interpreted as a statement regarding his type.

To provide a few examples, a message m = [0.3, 0.4] is interpreted as the following statement: “my

type lies somewhere in between 0.3 and 0.4”; a message m = {0.5} ∪ {0.7} is interpreted as “my type

is either 0.5 or 0.7”; a message m = Θ can be interpreted as to remain silent because it essentially

means “Anything is possible”.

Costly inspection: DM, after observing m, chooses whether or not to inspect the message with a

cost c > 0. An inspection reveals the truthfulness of the statement. Formally, if an inspection takes

place, DM will receive a binary signal

s(m, θ) =


t if θ ∈ m

l otherwise

(1)

If DM chooses not to inspect, she receives an uninformative signal s(m, θ) = u. The signal t indicates

the sender’s claim is inspected and confirmed to be truthful; l indicates the sender’s claim is inspected

and confirmed to be a lie; u indicates the sender’s claim is uninspected.

Action: After observing both the message m and the inspection signal s, DM chooses a payoff

relevant action x ∈ [0, 1].

Preference: DM has a quadratic loss function −(x− θ)2 − c1I , where 1I = 1 if an inspection took

place, 1I = 0 otherwise. The sender has a von Neumann-Morgenstern utility u(x) which is strictly

increasing in x. In other words, there is no common interest between DM and the sender. DM wants to

take an action that matches the true state, while the sender always prefers a higher action, independent

of the state.

The design problem: An mechanism (q, P,X) consists of a message rule q : Θ→ ∆M, where q(.|θ)

is type θ’s probability distribution over the message spaceM; an inspection rule P :M→ [0, 1], where

P (m) is the probability of inspecting message m; and an action rule X :M× {t, l, u} → [0, 1], where

X(m, s) is the action taken following message m and inspection signal s ∈ {t, l, u}.

For expositional clarity, I confine attention to pure message rule in this paper, i.e. each type of

sender θ sends a message mq(θ) with probability 1. In an Online Appendix, I show that all results can

be generalized to allow mixed message rules.

7

https://sites.google.com/site/terrytamyinchi/Online_Appendix.pdf


Given a pure message rule mq, let Mq = mq(Θ) be the set of all on-path messages 2. For any

on-path message m ∈Mq, let

Θt
q(m) = {θ ∈ Θ : mq(θ) = m and θ ∈ m} (2)

Θl
q(m) = {θ ∈ Θ : mq(θ) = m and θ 6∈ m} (3)

Θu
q (m) = Θt

q(m) ∪Θl
q(m) (4)

be the sets of truthful senders, lying senders and senders of m. DM cannot commit to an inspection

rule and/or an action rule. They have to be sequentially rational based on a Bayesian updated belief.

Sequentially rational action: Since DM’s utility is quadratic, her optimal action equal conditional

expectation of the sender’s type given the posterior belief, so an action rule X is sequentially rational

given q if for any m ∈Mq and s ∈ {t, l, u},

X(m, s) = E[Θs
q(m)] (5)

where E[Θ′] ≡
∫
Θ′ θdF (θ)

Pr(Θ′) denotes the conditional expected type given a set of type Θ′ ⊆ Θ, and

Pr(Θ′) ≡
∫

Θ′ dF (θ) denotes the probability of Θ′ 3.

After observing the on-path message m and inspection signal s, DM chooses an action to match

the conditional expected type of senders who send m and lead to inspection signal s given the message

rule q. Instead of blindly taking a message at its face value, a Bayesian, sequentially rational DM

updates her belief given the set of equilibrium senders who would pass/fail an inspection, and reacts

optimally. When there is no inspection, DM remains aware of the possibility of lying and chooses an

action that matches the weighted average type of the equilibrium truth-tellers and liars.

Information value of inspection: Given a message rule q and a sequentially rational action rule X,

DM’s expected continuation payoff if she inspects an on-path message m ∈Mq is:

−wq(m)V ar(Θl
q(m))− (1− wq(m))V ar(Θt

q(m))

where wq(m) =
Pr(Θlq(m))

Pr(Θuq (m)) is the conditional probability of sender being a liar given that he sends

m, V ar(Θ′) ≡
∫
Θ′ (θ−E[Θ′])2dθ

Pr(Θ′) denotes the conditional variance given Θ′4. Upon inspection, DM’s

2Throughout this paper, I follow the convention and refer to g(X) as {y : ∃x ∈ X such that y ∈ g(x)} for any

function or correspondence g and set X within the domain of g.
3It is possible that Pr(Θs

q(m)) = 0 even if the message m is on-path, if m is sent by a set of types with zero mea-

sure but positive density. Therefore, a more precise version of condition (5) is that for any subset of on-path messages

M ⊆ Mq,
∫
M

∫
Θs

q(m)
X(m, s)dF (θ)dm =

∫
Θs

q(M)
θdF (θ) for s ∈ {t, l, u}. This ensures that DM’s action rule is sequen-

tially rational given q almost surely.
4Similarly, a more precise condition for wq(m) is that for any M ⊆Mq,

∫
M
wq(m)

∫
Θl

q(m)
dF (θ)dm = Pr(Θl

q(M)).
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expected loss from action imprecision for a message m is the weighted average conditional variance of

equilibrium truth-tellers and liars of m. DM’s expected continuation payoff if she does not inspect m

is:

−V ar(Θu
q (m)

which is the variance of the sender’s type conditional on him sending m. Therefore, the information

value of inspecting m is the reduction in conditional variance from the binary signal:

Vq(m) = wq(m)(1− wq(m))(E[Θl
q(m)]− E[Θt

q(m)])2 (6)

An inspection allows DM to make a better inference on the sender’s type and chooses more precise

action accordingly. If there is a large difference between the expected type of truth-tellers and liars

who send m, the value of differentiating these two groups is high. Besides, an inspection is more

informative when the liar to truth-teller ratio is less extreme. If the sender of m is very likely to be on

one side, not much information is revealed from an inspection. An inspection rule P is sequentially

rational given q if for any m ∈Mq,

P (m) ∈


{0} if c > Vq(m)

[0, 1] if c = Vq(m)

{1} if c < Vq(m)

. (7)

i.e. inspecting a message is credible only if information value of inspection is no less than cost of

inspection.

Sender’s optimality: Given inspection rule P and action rule X, type θ sender’s expected utility

from sending a message m is:

EUX,P (m|θ) =


P (m)u(X(m, t)) + (1− P (m))u(X(m,u)) if θ ∈ m

P (m)u(X(m, l)) + (1− P (m))u(X(m,u)) if θ 6∈ m
(8)

A pure message rule q is optimal given P and X if for any θ ∈ Θ and m′ ∈Mq
5,

EUX,P (mq(θ)|θ) ≥ EUX,P (m′|θ) (9)

5Incentive constraints over off-path messages are omitted because sequential rationality put no restriction on the

inspections and actions following those messages, so we can without loss of generality let X(m′, s) = 0 for any off-path

message m′, and sender will have no incentive to deviate to those messages.
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4 Incentive Compatible Mechanisms

This Section defines an incentive compatible mechanism and establishes the necessary and sufficient

conditions for the existence of an incentive compatible mechanism where inspections take place with

positive probability.

Definition 1 An mechanism Ω ≡ (q, P,X) is incentive compatible if P and X are sequentially rational

given q and q is optimal given P and X.

Since the decision-maker has no commitment power, an incentive compatible mechanism requires that

DM has no incentive to deviate after any history, so it corresponds to a Perfect Bayesian equilibrium

in a game-theoretic approach. The two concepts are interchangeable under this framework. Given an

incentive compatible mechanism Ω, DM’s ex-ante expected payoff is:

EUDM (Ω) = −
∫
Mq

∑
s=t,l

∫
Θs

(
m)

[(1− P (m))(X(m,u)− θ)2 + P (m)[(X(m, s)− θ)2 + c]]dF (θ)dm (10)

Define

GΩ(x) =

∫
Mq

∑
s=t,l

∫
Θs

(
m)

[(1− P (m))1(X(m,u) ≤ x) + P (m)1(X(m, s) ≤ x)]dF (θ)dm (11)

be the distribution of induced actions under Ω, and

pΩ =

∫
Mq

P (m)

∫
Θuq (m)

dF (θ)dm (12)

be the ex-ante probability that a sender is inspected under Ω. Sequential rationality of the action rule

X implies that

EUDM (Ω) =

∫
[0,1]

x2dGΩ(x)− cpΩ − E[θ2] (13)

where E[θ2] ≡
∫

Θ θ
2dF (θ). Sender’s ex-ante expected payoff is:

EUS(Ω) =

∫
[0,1]

u(x)dGΩ(x) (14)

I refers to the pair (GΩ, pΩ) as the induced outcome distribution of an mechanism. I say two

mechanisms Ω and Ω′ are distribution equivalent if they have the same induced outcome distribu-

tion. Since (GΩ, pΩ) uniquely determine payoffs in an incentive compatible mechanism, two incentive
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compatible, distribution equivalent mechanisms induce the same expected payoffs for DM and every

type of sender.

Since DM cannot commit to a sub-optimal action rule, the expected value of induced actions must

equal the expected value of the state. In fact, the distribution of induced actions G is a mean-preserving

contraction of F . A more dispersed G implies a more precise match between the induced actions and

the states, and thus a higher expected payoff for DM.

Proposition 1 For any incentive compatible mechanism Ω = (q, P,X) there exists a distribution

equivalent mechanism (q̂, P̂ , X̂) such that for any m ∈Mq̂:

(i) X̂(m, t) ≥ X̂(m, l), and

(ii) m = Θt
q̂(m).

Condition (i) of Proposition 1 provides a natural interpretation of the mechanism: liars pretend

to be truth-tellers in the hope of inducing higher actions 6. Condition (ii) comes from the fact that

condensing the statement of a message to include only equilibrium truth-tellers is the most effective

design in maintaining incentive compatibility. Under such design, any type who deviates from his

equilibrium message to any other on-path message will be identified as a liar, which according to (i),

gets a lower expected payoff than if he is identified as a truth-teller. Proposition 1 is useful in analyzing

the set of implementable outcome because an outcome distribution is implementable if and only if it

can be induced by an incentive compatible mechanism that satisfies the above properties 7. Unless

otherwise stated, any mechanism discussed henceforth satisfies conditions (i) - (ii) of Proposition 1.

LetM0
q = {m ∈Mq : P (m) = 0} be the set of on-path uninspected messages. Sender’s optimality

requires that any messages in M0
q must induce the same action, for otherwise senders who receive a

lower uninspected action will deviate to a higher one. Therefore, we can without loss assume that there

6In a model where sender can make a truthful claim and tricks the lie-detector to identify him as a liar (for exam-

ple, by acting nervous or intentionally failing a test), then condition (i) must holds in any incentive compatible mecha-

nism for any inspected message m, for otherwise equilibrium truth-tellers who act normally and get X(m, t) will devi-

ate to act nervously and get X(m, l).
7Note however that oftentimes an implementable outcome distribution can also be induced by other incentive com-

patible mechanisms. For example, if there exists an on-path message m′ which is never inspected, and Θ′ is the set of

senders of m′, then an incentive compatible mechanism that satisfies (ii) requires the statement m′ to be a subset of

Θ′. However, the mechanism will still be incentive compatible if senders of m′ simply “ remain silent ”, i.e. m′ = Θ.

By definition, it means every type becomes truth-teller of m′, but it has no effect on the sender’s incentive because

being truthful and lying makes no difference to the outcome when m′ is never inspected.
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is at most one such message, m0
q , and all senders of that message are truthful, i.e. m0

q = Θu
q (m) =

Θt
q(m) ≡ Θ0

q , where Θ0
q is the set of types who are never inspected in equilibrium.Sequential rationality

of X requires X(m0
q , u) = E[Θ0

q ]. Let M+
q = {m ∈ Mq : P (m) > 0} be the set of messages that are

inspected with positive probability. M+
q is simply referred to as the set of inspected messages. For

θ ∈ Θ, I say θ is truthful if θ ∈ Θt
q(M+

q ); θ is lying if θ ∈ Θl
q(M+

q ); θ is uninspected if θ ∈ Θ0
q .

I say Ω is a mechanism with inspection if pΩ > 0, i.e, some on-path messages are inspected with

positive probability. The following assumption and proposition establish the necessary and sufficient

conditions for the existence of incentive compatible mechanism with inspection.

Assumption 1 c < 1
4 and E[Θ] ≡

∫ 1
0 θdF (θ) < 1

2 +
√

1
4 − c.

Proposition 2 There exists an incentive compatible mechanism with inspection if and only if As-

sumption 1 is satisfied.

The credibility of inspections relies on the existence of both liars and truth-tellers. Upon receiving

a message, if DM’s interim expectation on the sender’s type is extreme (either too high or too low), the

information value of an inspection is low because the sender is either very likely to be truth-telling or

very likely to be lying, and inspection is non-credible. Now consider an uninspected message m and a

randomly inspected message m′. In order to incentivize the liars who send m′ to take the risk of being

caught, DM’s interim expectation on sender’s type upon receiving m′ must be higher than the interim

expectation upon receiving m, so that if liars of m′ get away with the lie, they receive a higher payoff

than those who send m. Since DM is Bayesian, her interim expectation upon receiving some inspected

messages must be higher than the prior expectation, so if the prior expectation is too optimistic,

the interim expectation of those messages will be too optimistic for inspection to be credible. It is

worth noting that the condition is not symmetric. Even if prior expectation on the sender’s type is

pessimistic, it is possible to design a mechanism with pessimistic interim belief for the uninspected

message and moderate interim beliefs for the inspected messages so that liars of the inspected message

are incentivized and inspections are credible. Therefore, the lie-detection technology is useful when the

prior expectation is moderate or pessimistic, but not when the prior expectation is optimistic. Figure

1 depicts the region of parameter values in which an incentive compatible mechanism with a positive

probability of inspection exists. The threshold of prior expectation such that inspection is incentive

compatible is decreasing in cost of inspection, meaning that when the cost is smaller, inspection

is incentive compatible for a larger range of optimistic beliefs. When the cost of inspection is small,

12



Figure 1: Existence of incentive compatible mechanism with inspection

0

c

E[Θ]

1
4

1
2

IC mechanism
with inspection exists

Note: Horizontal axis depicts the expectation on type under prior distribution F ; Vertical axis de-

picts the cost of inspection.

inspection is credible even if conditional expectations given the inspected statements are optimistic and

information values of inspection are small. Inspection can therefore facilitate information transmission.

As cost goes to 0, the lie-detection technology is useful for almost any prior distribution.

5 Optimal Mechanisms

This section defines optimal mechanism and establishes the properties of optimal mechanisms.

Definition 2 An mechanism Ω is optimal if it is incentive compatible, and for any incentive compatible

mechanism Ω′, EUDM (Ω) ≥ EUDM (Ω′).

An optimal mechanism induces the highest expected payoff to DM among all incentive compatible

mechanisms. I focus on analyzing the best mechanism for DM because oftentimes DM’s welfare reflects

the public interest, for instance consumers and voters who have to make decisions under incomplete

information. The optimal mechanism indicates an upper bound to the welfare of the public under

lie-detection technology. Besides, the optimal mechanism minimize an weighted average objective

of inference error and inspection cost. Therefore, it can be interpreted as the most efficient way of

combating misinformation using lie-detection technology. On the other hand, the sender’s welfare is

sensitive to his risk attitude. However, it is worth-noting that if the sender is risk neutral, he will

13



get the same ex-ante payoff in any incentive compatible mechanism because the mean of the induced

action distribution must equal the prior expectation of the state. In such case, the outcome induced

by an optimal mechanism is also Pareto-efficient.

Now we derive some properties of an optimal mechanism. For any set of messages M ∈ M, let

Prq(M) = Pr(Θu
q (M)) be the ex-ante probability of the senders of M under message rule q. We say

a property holds almost everywhere for a set of messages M if it holds for a subset of messages

M ′ ⊆M such that Prq(M
′) = Prq(M).

Proposition 3 (No direct benefit of inspection)

In an optimal mechanism Ω, Vq(m) = c almost everywhere for m ∈M+
q .

Proposition 4 (Liars are minority)

In an optimal mechanism Ω, wq(m) ≤ 0.5 almost everywhere for m ∈M+
q .

The value of lie-detection technology to DM is composed of two parts: direct information value

and indirect deterrence effect. Proposition 3 says that direct information value of inspection is offset

by the cost of inspection in an optimal mechanism, and the net benefit of inspection comes from its

effect on the sender’s incentive: some types of sender refrain from making a higher claim because of

the possible lie-detection. As a result, some information is transmitted through the messages in the

sense that interim expectations of the sender’s type upon receiving different messages are different,

so DM is able to make a better inference on the sender’s type even when inspection does not take

place ex-post. Proposition 4 says that for any inspected message in an optimal mechanism, liars are

a minority compared with truth-tellers. It is because the role of liars is to sustain moderate liar to

truth-teller ratios so that information values are high enough for credible inspections. Such ratios can

be achieved by either a minority of liars or a majority of liars. Compared with a mechanism with a

majority of liars, a mechanism with a minority of liars means that the expected types of the sender

of inspected messages are higher. That creates larger differences between conditional expectations

given inspected messages and the uninspected message, which means more information is transmitted

through messages under a mechanism with a minority of liars.

Proposition 5 (Three-interval structure)

In an optimal mechanism Ω, there exists θΩ and θΩ such that 0 ≤ θΩ < θΩ ≤ 1 and for almost every

θ ∈ Θ, θ is lying if θ < θΩ; truthful if θ > θΩ; uninspected if θ ∈ [θΩ, θΩ].
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Figure 2: The optimal proportion of liars

Vq(m)

w

c

0.5wq(m)

Note: Horizontal axis depicts the proportion of liars in an inspected message m; Vertical axis de-

picts value of inspecting m. An optimal mechanism minimizes the proportion liars subject to the

constraint that V (m) ≥ c. The expression of wq(m) is given in (16).

An optimal mechanism has a three-interval configuration such that when the state is above the

cutoff θΩ, sender is truthful; When the state is below the cutoff θΩ, sender lies and claims that the

state is somewhere above θΩ, such claims are inspected with positive probabilities; When the state

is intermediate, sender makes the claim in which DM does not inspect. Such configuration induces

disperse inferences upon inspection, which benefit DM the most.

Under the optimal mechanism, low type senders are incentivized to lie in order to justify inspections

of the truthful statements made by high type senders. Such inspections prevent moderate type senders

from exaggerating their types in fear of getting caught lying and perceived as low types.

5.1 Optimal Mechanism: decreasing mimicking with precise statements

This subsection defines the decreasing mimicking mechanism and establishes the conditions in which

such a mechanism is optimal.

For d ∈ [2
√
c, 1], define

w−(d) =
1

2
−
√

1

4
− c

d2
(15)

which is the smaller root of the equation w(1 − w)d2 = c. Given that d is the distance between the

conditional expected type of truth-tellers and liars in a message m, w−(d) is the minimum proportion
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of liars such that information value of inspecting m is no less than c. This minimum proportion is

decreasing in d, meaning that the credibility of inspection can be sustained for a smaller proportion

of liars when the distance of conditional expectations is larger. Note that 2
√
c is the minimum re-

quired distance such that an inspection can be made credible, and w−(2
√
c) = 1

2 . Proposition 3 and

Proposition 4 imply for any inspected message m ∈M+
q in an optimal mechanism,

wq(m) = w−(X(m, t)−X(m, l)) (16)

so for any inspected message in an optimal mechanism, proportion of liars is uniquely determined by the

distance between expected types of truth-tellers and liars. For xl ∈ [0, 1− 2
√
c] and xt ∈ [xl + 2

√
c, 1],

define

X∗u(xt, xl) =w−(xt − xl)xl + (1− w−(xt − xl))xt (17)

which is the expected type of senders of a message m where xt is the expected type of truth-tellers, xl

is the expected type of liars, and proportion of liars is minimized subject to DM’s incentive constraint

of inspection. Since DM is sequentially rational, for any m ∈M+
q in an optimal mechanism,

X(m,u) = X∗u(X(m, t), X(m, l)) (18)

so the induced action when the inspection does not take place is uniquely determined by the expected

type of truth-tellers and liars.

Now we define the decreasing mimicking mechanism. Define a pair of cutoffs θd, θd and matching

function φd : [θd, 1]→ [0, θd] as a solution of the following system of differential equation and boundary

conditions:

φ̇d(θ) = − w−(θ − φd(θ))
1− w−(θ − φd(θ))

f(θ)

f(φd(θ))
(19)

φd(1) = 0 (20)

φd(θd) = θd (21)

To determine the boundaries θd and θd, first define θ̂ such that

θ̂ − φd(θ̂) = 2
√
c (22)

Lemma 1 If Assumption 1 is satisfied, then there exists a unique solution (θ̂, φd) that satisfies con-

ditions (19), (20) and (22). Furthermore, there exists a unique θd ∈ [θ̂, 1] such that such that for any

θ ∈ [θ̂, 1], θ < θd implies X∗u(θ, φd(θ)) < E[φd(θ), θ]; θ > θd implies X∗u(θ, φd(θ)) > E[φd(θ), θ].

16



Figure 3: The structure of decreasing mimicking mechanism Ωd.

0 1

Liars

φd(θ) φd(θ
′)θd

Uninspected

x̂ θd
Truth-tellers

θ′ θ

Note: In the decreasing mimicking mechanism, types above θd make truthful and precise claims,

which are mimicked by liars below θd according to a decreasing mimicking function. These claims

are randomly inspected. Types in between θd and θd pool at a single claim which is never inspected.

x̂ denotes the mean of the interval (θd, θd). If x̂ is above the mid-point of this interval, the decreas-

ing mimicking mechanism is optimal.

θd(.) represents a decreasing matching function from the truthful interval to the lying interval which

specifies the lying pattern in the decreasing mimicking mechanism. Lemma 1 pins down a unique pair

of boundaries (θd, θd) for the two intervals.

Define the decreasing mimicking mechanism Ωd which is characterized by (θd, θd, φ
d) defined

in conditions (19) - (21) and Lemma 1 such that:

(i) Intermediate types - Uninspected vague claim: There is an uninspected message m0
q = [θd, θd]

sent by θ ∈ [θd, θd] and P (m0
q) = 0;

(ii) High types - Randomly inspected, precise claims: There is a continuum of randomly

inspected messagesM+
q = {m = {θ} : θ ∈ (θd, 1]}, each m ∈M+

q sent by the truthful type θ = m and

P (m) ∈ (0, 1);

(iii) Low types - Liars of the high claims: Each m ∈M+
q is sent by a liar φd(m).

The action rule X is determined by sequential rationality. For m ∈M+
q ,

X(m, t) = m

X(m, l) = φd(m) (23)

X(m,u) = X∗u(m,φd(m))

and

X(m0
q , u) = E[θd, θd] (24)
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The inspection rule P for m ∈M+
q is determined by the incentive compatibility conditions of the liars:

P (m) =
u(X(m,u))− u(X(m0

q , u))

u(X(m,u))− u(X(m, l))
(25)

Figure 3 depicts the structure of the decreasing mimicking mechanism. Under Ωd, each truthful

type θ makes the precise claim “My type is θ”, and each of such claim is mimicked by exactly one

type of liar φd(θ), where φd(.) is decreasing so worse liars tell bigger lies. Upon receiving each of

these messages, DM is indifferent between inspecting and not inspecting. The inspection probability

is chosen so that liars are indifferent between telling such lies and making the uninspected claim.

The optimal mechanism specifies a list of permissible claims the sender is allowed to make: a vague

claim that represents moderate states, and a continuum of precise, high claims. Requiring a precise

statement for high claims helps make more precise decisions upon inspection. Random inspections

of those claims are justified because each of them is made by a low type and a high type. A vague

moderate claim pools the moderate types which are not distant enough to be worth inspecting 8.

Lemma 2 If Assumption 1 is satisfied, the decreasing mimicking mechanism Ωd is incentive compatible

with 0 < θd < θd < 1, and EUDM (Ωd) > −min{V ar(Θ), c}.

Lemma 2 means that Ωd is incentive compatible whenever there exists an incentive compatible

mechanism with inspection. I say two mechanisms Ω = (q,X, P ) and Ω′ = (q′, X ′, P ′) are equal

almost everywhere if for almost every θ ∈ Θ and s = {t, l, u}, mq(θ) = mq′(θ), X(mq(θ), s) =

X ′(mq′(θ), s) and P (mq(θ)) = P ′(mq′(θ)), i.e. sender sends the same messages, induces the same

actions and inspected with the same probabilities in the two mechanisms almost surely.

Proposition 6 (Optimality of the decreasing mimicking mechanism) Suppose in an optimal

mechanism Ω, E[θΩ, θΩ] >
θΩ+θΩ

2 , then Ω and Ωd are equal almost everywhere.

When the mean of the uninspected interval is skewed towards its boundary to the truthful interval

θΩ, the value of inspecting the marginal truthful type around θΩ is small, so extending the uninspected

interval to the right would be beneficial. Decreasing matching minimizes the truth-teller to liar ratios

and allows the uninspected interval to extend farthest to the right. The condition of Proposition 6

8It is worth noting that despite having a list of permissible claims, exogenous enforcement on the sender’s obedi-

ence is not necessary. It is because there is always a perfect Bayesian equilibrium where any off-path claim is regarded

as a signal of the worst state and punished maximally so that the sender will never deviate to any claim out of the list.
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is satisfied under a broad class of prior distributions. Two examples are symmetric single peaked

distributions and distributions with increasing density.

Remark 1 Suppose Assumption 1 is satisfied, and either:

(1) F is symmetric and single peaked, or

(2) f ′(θ) > 0 for any θ ∈ [0, 1],

then in the optimal mechanism Ω, E[θΩ, θΩ] >
θΩ+θΩ

2 .

6 State-verification and lie-detection

In this section, I compare state-verification technology to lie-detection technology, in particular, DM’s

welfare under the two technologies. Instead of revealing a binary signal as in (1), consider now the

true state is revealed upon inspection, so by paying cost c to inspect the message m, DM receives the

precise signal

s(m, θ) = θ (26)

If DM chooses not to inspect, she receives an uninformative signal s(m, θ) = u. Under state-verification

technology, the sequentially rational action rule for DM is

X(m, θ) = θ;X(m,u) = E[Θu
q (m)] (27)

where Θu
q (m) is the set of senders who send m, and value of verifying m is the conditional variance of

the sender’s type:

Vq(m) = V ar(Θu
q (m)) (28)

and the sequentially rational inspection rule for DM is

P (m) ∈


{0} if c > Vq(m)

[0, 1] if c = Vq(m)

{1} if c < Vq(m)

. (29)

Type θ sender’s expected utility from sending a message m is

EUX,P (m|θ) = P (m)u(θ) + (1− P (m))u(X(m,u)) (30)
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and sender’s optimality implies that for any on-path message m′ ∈Mq,

P (mq(θ))u(θ) + (1− P (mq(θ)))u(X(mq(θ), u) ≥ P (m′)u(θ) + (1− P (m′))u(X(m′, u) (31)

where mq(θ) is the message sent by θ under the mechanism. I will show that there are only two kinds

of incentive compatible mechanism under costly state-verification,

Uninformative mechanism: P (m) = 0 and X(m,u) = E[Θ] for any m ∈Mq, and

State-verifying mechanism: P (m) = 1 and X(m, θ) = θ for any m ∈Mq.

Proposition 7 (No informative communication under state-verification.)

Under costly state-verification technology, if c > V ar(Θ), only the uninformative mechanism is incen-

tive compatible; if c < V ar(Θ), only the state-verifying mechanism is incentive compatible.

The ability to reveal the state precisely upon an inspection completely eliminates any incentive

for the sender to transmit information. Gain from state-verification technology comes solely from

the direct information value. It is contrary to the lie-detection technology, which benefits DM by

manipulating the sender’s incentive to transmit information. Such manipulation is possible because

the nature of lie-detection creates a strategic uncertainty to DM: even if she spots a lie, she does not

reveal the true type of the liar and has to decide the action base on equilibrium inference. This could

benefit DM in an ex-ante sense because the sender might be deterred from deviation in fear of being

mistaken as a worse type than what he actually is, and such a deterrence effect facilitates informative.

However, if DM reveals the true state from an inspection, this deterrence will not be credible, and

there will be no reason for the sender to stay honest. As a result, revealing more information from

inspection eliminates voluntary information transmission from the sender. The following Proposition

shows that learning more from inspection reduces DM’s payoff. With Proposition 7, DM’s ex-ante

payoff under costly state-verification technology is

EU sDM = −min{V ar(Θ), c} (32)

Proposition 8 (DM is better off under lie-detection technology than state-verification.)

Let Ω∗ be the optimal mechanism under lie-detection technology. Then under any inspection cost and

distribution, EUDM (Ω∗) ≥ EU sDM . Furthermore, if c < V ar(Θ), then EUDM (Ω∗) > EU sDM .

This result provides a theoretical foundation for the emphasis on expert’s integrity, instead of the

objective information. By neglecting further information about the truth (other than the information
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that determines whether the sender is lying), the decision-maker is able to impose a credible threat that

whoever being caught lying will be perceived poorly, regardless of the sender’s true type. Therefore,

even though there is no common interest between experts and decision-makers, some types of experts

refrain from making higher claims in fear of being perceived as a worse type than they actually are.

7 Conclusion

Lying and lie-detection emerge from the opportunism of informed parties and the skepticism of unin-

formed parties. I establish a framework that allows analyses on the strategic interaction between lying

and lie-detection, and characterize the optimal lie-detection policy. The results suggest that optimal

lie-detection works as a credible deterrence tool. Low types are induced to lie so that inspections are

justified, which deter higher types from lying. Under certain conditions, such optimal equilibrium can

be achieved by allowing the sender to choose among a vague moderate claim and a continuum of precise

high claims. This provides a direction for efficient allocation of resources in combating misinformation

in various aspects such as politics and product advertising.

Several potential extensions are worth mentioning. As the first attempt in the literature to study

endogenous lying and costly lie-detection, I restrict attention to the setting of single round commu-

nication and lie-detection. In some applications, the sender and the receiver can conduct multiple

rounds of communication and inspect lie-detection, before a final decision is made by the receiver. For

instance, the police can ask the suspect multiple questions and conduct lie-detection for each claim

made by the suspect. Dziuda and Salas (2018) show that the receiver prefers to commit to a single

round communication when the probability of lie-detection is exogenously high, because anticipating

the second chance of communication makes the sender more likely to lie. It might appear that this

effect is strengthened when lie-detection is costly as the receiver has to pay the cost of inspection in

each round. A formal analysis is required for such an argument. Another potential extension is to

allow a certain degree of common interest between the sender and the receiver, such as biased sender

as in Crawford and Sobel (1981). It is not clear whether having a sender with a smaller bias would

benefit the receiver when lie-detection is possible. On one hand, sender with smaller bias is willing to

reveal more precise information, as suggested by the standard cheap talk model. On the other hand,

when bias is small, there is no way to induce the sender to tell big lies. This hinders the formation of

credible inspection. Without inspection, the sender might be tempted to tell small lies, which impede

informative communication. The analysis of these opposing effects may present interesting avenues for
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future research.
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Appendix A

This Appendix provides proofs of Propositions 1 - 8 and Lemmas 1 - 2.

Proof of Proposition 1:

Fix an incentive compatible mechanism Ω. Let M1 = {m ∈ Mq : X(m, l) > X(m, t)} be the set

of on-path messages such that the induced action of liars is higher than the induced action of truth-

tellers. Define a mortified mechanism Ω̂ such that for each m ∈ Mq/M1, the set of senders remain

unchanged but they now send the transformed message T (m) = Θt
q(m). For each m ∈ M1, the set of

senders remain unchanged but they now send the transformed message T (m) = Θl
q(m). For inspection

probabilities, let P̂ (T (m)) = P (m) for each m ∈Mq.

The set of on-path messages of the modified mechanism Ω̂ is Mq̂ = T (Mq). The sequentially

rational actions for Ω̂ are X̂(T (m), s) = X(m, s) for m ∈Mq/M1 and s = t, l, u; X̂(T (m), t) = X(m, l),

X̂(T (m), l) = X(m, t) and X̂(T (m), u) = X(m,u) for m ∈ M1. It is straight-forward that for all

m ∈ Mq X̂(T (m), t) ≥ X̂(T (m), l) and T (m) = Θt
q(T (m)). Therefore, condition (i) and (ii) are

satisfied in the mortified mechanism Ω̂. Furthermore, since the induced actions remain unchanged for

every type of sender, so Ω̂ and Ω are distribution equivalent.

To see that Ω̂ is incentive compatible, note that for m ∈ Mq/M1, wq(m) = w(q̂)(T (m)), and for

m ∈M1, wq(m) = 1−w(q̂)(T (m)). Therefore, for any m ∈Mq, Vq(m) = wq(m)(1−wq(m))(X(m, t)−

X(m, l))2 = w(q̂)(T (m))(1 − w(q̂)(T (m)))(X̂(T (m), t) − X̂(T (m), l))2 = Vq̂(T (m)), thus (7) remains

satisfied in Ω̂. To check incentive constraints (9), note that the equilibrium payoff of each type of

sender remain unchanged, i.e. EUX̂,P̂ (mq̂(θ)|θ) = EUX,P (mq(θ)|θ). By the definition of the mor-

tified set of message, any type θ would be identified as a liar of any on-path message other than

its equilibrium message, i.e. θ 6∈ m′ for any m′ ∈ T (Mq) and m′ 6= mq̂(θ). This combined with

the fact that X̂(T (m), t) ≥ X̂(T (m), l) imply EUX̂,P̂ (T (m′)|θ) ≤ EUX,P (m′|θ) for any m′ ∈ Mq.

Therefore, EUX̂,P̂ (mq̂(θ)|θ) = EUX,P (mq(θ)|θ) ≥ EUX,P (m′|θ) ≥ EUX̂,P̂ (T (m′)|θ) for any θ ∈ Θ and

m′ ∈ Mq, where the first inequality holds by incentive compatibility of the original mechanism, thus

(9) is satisfied in the modified mechanism. Therefore, we conclude that Ω̂ is incentive compatible.

Q.E.D.

Proof of Proposition 2:

“Only if”:
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Let Ω ≡ (q, P,X) be an incentive compatible mechanism where pΩ > 0, then the set of inspected

messages M+
q has positive measure, so (5) implies that for almost every m ∈ M+

q , X(m, t) < 1

and X(m, l) > 0, so Vq(m) = wq(m)(1 − wq(m))(X(m, t) − X(m, l))2 < 1
4 . Since (6) and (7) imply

Vq(m) ≥ c, it must be the case that c ≤ Vq(m) < 1
4 .

By (6) and the definition of w−(.), we have that w−(X(m, t) − X(m, l)) = min{w ∈ [0, 1] :

Vq(m) ≥ c}. Since for any m ∈ M+
q , Vq(m) ≥ c, so wq(m) ≥ w−(X(m, t) − X(m, l)), and thus

X(m,u) = wq(m)X(m, l) + (1 − wq(m))X(m, t) ≤ X∗u(X(m, t), X(m, l)). Since X is sequentially

rational, X(m, t) = E[Θt
q(m)] ≤ 1 and X(m, t) = E[Θl

q(m)] ≥ 0, with the inequalities hold strictly

if Pr(Θu
q (m)) > 0. Therefore, X(m,u) ≤ X∗u(X(m, t), X(m, l)) ≤ X∗u(1, 0) = 1

2 +
√

1
4 − c, where the

second inequality holds since by Lemma 6 X∗u(X(m, t), X(m, l)) is strictly increasing in X(m, t) and

strictly decreasing in X(m, l), and it hold strictly if Pr(Θu
q (m)) > 0.

Since Θ0
q ∪Θu

q (M+
q ) = Θ, so Pr(Θ0

q) = 1− P (Θu
q (M+

q )) and

(1− P (Θu
q (M+

q )))E[Θ0
q ] + P (Θu

q (M+
q ))E[Θu

q (M+
q )] = E[Θ] (33)

. Since X is sequentially rational,

P (Θu
q (M+

q ))E[Θu
q (M+

q )] =

∫
M+

q

X(m,u)

∫
Θuq (m)

dF (θ)dm

≤X∗u(1, 0)

∫
M+

q

∫
Θuq (m)

dF (θ)dm

=Pr(Θu
q (M+

q ))(
1

2
+

√
1

4
− c) (34)

where the inequality holds strictly if Pr(Θu
q (M+

q )) > 0. If Pr(Θ0
q) = 0, then P (Θu

q (M+
q )) = 1 and

(33) and (34) imply E[Θ] = E[Θu
q (M+

q )] < 1
2 +

√
1
4 − c. If Pr(Θ0

q) > 0, then Lemma 3 implies that

for any m ∈ M+
q , E[Θ0

q ] = X(m0
q , u) < X(m,u), so by (34) E[Θ0

q ] < E[Θu
q (M+

q )] ≤ 1
2 +

√
1
4 − c, then

(33) implies E[Θ] < 1
2 +

√
1
4 − c.

“If”:

The decreasing mechanism Ωd defined at (19) - (24) is an example, where Lemma 2 implies that

if Assumption 1 is satisfied, then Ωd is incentive compatible with 0 < θd < θd < 1, and thus pΩd =∫ 1
θd
P ({θ})[f(θ) + φ̇d(θ)f(φd(θ))]dθ > 0.

Q.E.D.

Proof of Proposition 3: Suppose contrary to the claim, there exists a positive measure set inspected

messages M1 ⊆ M+
q such that Vq(m) 6= c for all m ∈ M1. Since P (m) > 0, sequential rationality
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(7) then requires that Vq(m) > c and P (m) = 1, and (b) of Lemma 3 implies that for all m ∈ M1,

X(m, l) = x̂, where x̂ = X(m0
q , u) if m0

q exists, x̂ = maxm′ X(m′, l) otherwise. Therefore, we have

E[Θl
q(m)] = E[Θl

q(M1)] = x̂ for all m ∈M1.

Denote Θ̂ = Θl
q(M1) be the set of liars who send m ∈ M1 in the original mechanism. For

m ∈ M1, denote ŵ(m) = w−(X(m, t) − x̂) be the smallest weight on liars such that value of in-

spection is no less than c. Since for all m ∈ M1, Vq(m) > c, so wq(m) > ŵ(m). Now define

p̂ =
∫
M1

∫
Θtq(m)

ŵ(m)
1−ŵ(m)dF (θ)dm, which is the total minimum measure of liars required to match with

truth-tellers of m ∈ M1 such that value of inspection is no less than c. We have p̂ < Pr(Θ̂) =∫
M1

∫
Θtq(m)

wq(m)
1−wq(m)dF (θ)dm.

Assign an arbitrary strict ranking r : M1 → R to the message set M1. Then for any m ∈M l, let

z−(m) =
1

Pr(Θl
q(M1))

∫
m′∈M1:r(m′)<r(m)

ŵ(m′)

1− ŵ(m′)

∫
Θtq(m

′)
dF (θ)dm′ (35)

z+(m) =
1

Pr(Θl
q(M1))

∫
m′∈M1:r(m′)=r(m)

ŵ(m′)

1− ŵ(m′)

∫
Θtq(m

′)
dF (θ)dm′ (36)

be the cumulative required fraction of liars.

For any positive measure set of types Θ̂, define the mean-preserving division Θ̂(z) = Θ̂∩ [θ(z), θ(z)]

such that θ(z) and θ(z) solve

Pr(Θ̂(z)) = zPr(Θ̂) (37)

E[Θ̂(z)] = E[Θ̂] (38)

Define an modified messaging and action rules q̂, X̂ where other things remain unchanged, ex-

cept the set of messages M1. The uninspected message is modified to m0
q̂ = m0

q ∪ (Θ̂/Θ̂( p̂

P r(Θ̂)
)),

where Θ̂/Θ̂( p̂

P r(Θ̂)
) is a mean-preserving division of Θ̂ with mean x̂ and measure Pr(Θ̂) − p̂. For

m ∈ M1, the set of truth-tellers remain unchanged, while the set of liars is modified to Θl
q̂(m) =

Θ̂(z+(m))/int(Θ̂(z−(m))), a mean preserving division of Θ̂ where int(X) is the interior of set X, so

that E[Θl
q̂(m)] = x̂ and the set has measure ŵ(m)

1−ŵ(m)

∫
Θtq(m) dF (θ).

The sequentially rational actions for the modified uninspected messages m0
q̂ is

X̂(m0
q̂ , u) = E[Θ̂(z)] = x̂ (39)

and for m ∈M1,

X̂(m, t) = X(m, t)
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X̂(m, l) = X(m, l) = x̂ (40)

X̂(m,u) = ŵ(m)x̂+ (1− ŵ(m))X(m, t)

where X̂(m,u) > x̂, so (q̂, X̂) satisfies (a) of Lemma 3. Furthermore, by the definition of Θl
q̂(m) for

m ∈Ml, we have

wq̂(m) = ŵ(m) = w−(X̂(m, t)− X̂(m, l)) (41)

and thus

Vq̂(m) = c (42)

so (q̂, X̂) satisfies (b) of Lemma 3. Therefore, there exists P̂ such that Ω̂ = (q̂, P̂ , X̂) is incentive

compatible.

Under the modified mechanism Ω̂, the sequentially rational actions remain unchanged for every

type, but the ex-ante probability of inspection is reduced by Pr(Θ̂)− p̂ > 0. Therefore, EUDM (Ω̂) >

EUDM (Ω), contradicts that Ω is an optimal mechanism.

Q.E.D.

Proof of Proposition 4: By Proposition 3 Vq(m) = wq(m)(1 − wq(m))(X(m, t) − X(m, l))2 =

c for m ∈ M+
q , ans since X(m,u) = wq(m)X(m, l) + (1 − wq(m)X(m, t)), we have (X(m, t) −

X(m,u))((X(m,u) − X(m, l))) = c. Suppose contrary to the claim, wq(m) > 0.5 some positive

measure set of messages inM+
q , which implies X(m, t)−X(m,u) > (X(m,u)−X(m, l)), take a posi-

tive measure set of message M+ ∈M+
q such that X(m, t)−X(m,u) > (X(m,u)−X(m, l))+δ for some

δ > 0. Then for any ε > 0 there exists a positive measure set of message M+
ε ⊆M+ such that for any

m,m′ ∈M+
ε and s = t, l, u, |X(m, s)−X(m′, s)| < ε and X(m, t)−X(m,u) + δ < X(m,u)−X(m, l).

Let Θl
ε = Θl

q(M
+
ε ) and Θt

ε = Θt
q(M

+
ε ) be the aggregate set of truth-tellers and liars of M+

ε , and

Prlε = Pr(Θl
q(M

+
ε )) and Prtε = Pr(Θt

q(M
+
ε )) be the measure of the two sets. Let Elε = E[Θl

ε],

Etε = E[Θt
ε] and Euε = E[Θl

ε ∪ Θt
ε] be the corresponding expected values of the sets. Note that

|Esε −X(m, s)| < ε for any m ∈M+
ε and s = t, l, u, so we have

Etε − Euε > Euε − Elε + δ − 2ε (43)

|(Etε − Euε )(Euε − Elε)− c| < 4ε2 (44)

Let Ê be the larger root of (Etε−Ê)(Ê−Elε)−c = 0. (43) and (44) imply that for small enough ε, Etε−

Ê < Ê−Elε and Ê > Euε + δ. Fix any m ∈M+
q and Let u = P (m)u(X(m, l)) + (1−P (m))u(X(m,u))
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be the expected payoff of the liars, Let x̂ = u−1(u) be its certainty equivalence. Note that Proposition

1 implies any liar can mimic the payoff of any other liar, so incentive compatibility means all liars

receive the same payoff, and x̂ = X(m0
q , u) if an uninspected message m0

q exists. Lemma 3 implies

X(m, l) ≤ x̂ < X(m,u) for any m ∈M+
ε , so we have

Elε ≤ x̂ < Euε < Ê − δ < Etε − δ (45)

Let zl, zt solve

zlPr
l
εE

l
ε + ztPr

t
εE

t
ε =(zlPr

l
ε + ztPr

t
ε)x̂ (46)

(1− zl)PrlεElε + (1− zt)PrtεEtε =[(1− zl)Prlε + (1− zt)Prtε]Ê (47)

Since PrlεE
l
ε + PrtεE

t
ε = (Prlε + Prtε)E

u
ε , so (45) means zl ∈ (0, 1) and zt ∈ [0, 1)

For any positive measure set of types Θ̂, define the mean-preserving division Θ̂(z) = Θ̂∩ [θ(z), θ(z)]

such that θ(z) and θ(z) solve

Pr(Θ̂(z)) = zPr(Θ̂) (48)

E[Θ̂(z)] = E[Θ̂] (49)

We divide the liar set Θl
ε into Θl

ε(zl) and Θl
ε/Θ

l
ε(zl), and truthful set Θt

ε into Θt
ε(zt) and Θt

ε/Θ
t
ε(zt).

The mean-preserving divisions implies E[Θl
ε(zl)] = E[Θl

ε/Θ
l
ε(zl)] = Elε and E[Θt

ε(zt)] = E[Θt
ε/Θ

t
ε(zt)] =

Etε. From (46) and (47) we have E[Θl
ε(zl) ∪Θt

ε(zt)] = x̂ and E[Θl
ε/Θ

l
ε(zl) ∪Θt

ε/Θ
t
ε(zt)] = Ê.

Now define an modified mechanism Ω̂ = (q̂, P̂ , X̂) where other things remain unchanged, except

the set of messages M+
ε is off-path and an message m̂ = Θt

ε/Θ
t
ε(zt) is added with q̂(m̂|θ) = 1 for θ ∈

Θl
ε/Θ

l
ε(zl)∪Θt

ε/Θ
t
ε(zt). The uninspected message m0

q (if exists) is modified to m0
q̂ = m0

q∪Θl
ε(zl)∪Θt

ε(zt)

with q̂(m0
q̂ |θ) = 1 for θ ∈ Θl

ε(zl) ∪Θt
ε(zt).

The sequentially rational actions for the modified messages m̂ and m0
q̂ are X̂(m̂, t) = Etε, X̂(m̂, l) =

Elε, X̂(m̂, u) = Ê, X̂(m0
q̂ , u) = x̂. By (45) we still have X̂(m, l) ≤ X̂(m0

q̂ , u) < X̂(m,u) for all

m ∈ M+
q̂ , so (a) in Lemma 3 is satisfied. For the newly added inspected message m̂, (X̂(m0

q̂ , t) −

X̂(m0
q̂ , u))(X̂(m0

q̂ , u) − X̂(m0
q̂ , l)) = (Etε − Ê)(Ê − Elε) = c, so (b) in Lemma 3 is satisfied. Therefore

there exists P̂ such that Ω̂ is incentive compatible.

To compare DM’s exante payoffs, let GuΩ and Gu
Ω̂

be the distribution of uninspected induced actions

of the two mechanism defined in (56). By sequential rationality the two distributions have the same
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mean
∫ 1

0 xdG
u
Ω̂

(x) =
∫ 1

0 xdG
u
Ω(x) =

∫
Θ θdF (θ) and they differ only by actions induced by the set

Θl
ε ∪ Θt

ε. In the original mechanism Ω, a type in Θl
ε ∪ Θt

ε sends some m ∈ M+
ε with induced action

X(m,u) where |X(m,u)−Euε | < ε; In the modified mechanism Ω̂, a type in Θl
ε ∪Θt

ε send either m̂ or

m0
q̂ with induced action either X̂(m0

q̂ , u) = x̂ or X̂(m̂, u) = Ê. (45) implies that for small enough ε,

X(m0
q̂ , u) < X(m,u) < X̂(m̂, u) for any m ∈ M+

ε . Therefore, Gu
Ω̂

is a mean-preserving spread of GuΩ,

which means
∫

[0,1] x
2dGu

Ω̂
(x) >

∫
[0,1] x

2dGuΩ(x), then (55) implies EUDM (Ω̂) > EUDM (Ω), contradicts

that Ω is an optimal mechanism.

Q.E.D.

Proof of Proposition 5: By Lemma 16 the statement is true if Pr(Θ0
q) > 0. Now suppose there

is an optimal mechanism Ω in which Pr(Θ0
q) = 0, then Proposition 3 implies Vq(m) = c for almost

every m ∈M+
q , then Lemma 4 implies EUDM (Ω) = EU IDM (Ω) ≤ −c. Since Ω is incentive compatible,

Assumption 1 holds, but then Lemma 2 implies that the decreasing mechanism Ωd is also incentive

compatible, with EUDM (Ωd) > c ≥ EUDM (Ω), so Ω with Pr(Θ0
q) = 0 cannot be optimal. Q.E.D.

Proof of Lemma 1: Since w−(d) ∈ (0, 1
2 ] is well-defined and positive for any d ≥ 2

√
c, and c ≤ 1

4

means 2
√
c ≤ 1, so φ̇d(1) = − w−(1)

1−w−(1)
f(1)
f(0) is well-defined, and for any θ ≤ 1 in which θ− φd(θ) ≥ 2

√
c,

φ̇d(θ) is well-defined and negative, which means d(θ−φd(θ))
dθ > 1. Therefore, there exists unique solutions

φd and θ̂ ∈ (0, 1] that satisfy (19), (20) and (22).

To show the second part of the statement, for any θ ∈ [θ̂, 1],

dX∗u(θ, φd(θ))

dθ
=
∂X∗u(θ, φd(θ))

∂θ
+
∂X∗u(θ, φd(θ))

∂φd(θ)
φ̇d(θ) > 0 (50)

where the inequality holds by Lemma 6 and φ̇d(θ) < 0. Also,

dE[φd(θ), θ]

dθ

=
∂E[φd(θ), θ]

∂θ
+
∂E[φd(θ), θ]

∂φd(θ)
φ̇d(θ)

=
f(θ)(θ − E[φd(θ), θ])

Pr([φd(θ), θ])
− f(φd(θ))(φd(θ)− E[φd(θ), θ])

Pr([φd(θ), θ])
φ̇d(θ)

=
f(θ)

Pr([φd(θ), θ])(1− w−(θ − φd(θ)))
[(1− w−(θ − φd(θ))θ + w−(θ − φd(θ))φd(θ)− E[φd(θ), θ]]

=
f(θ)

Pr([φd(θ), θ])(1− w−(θ − φd(θ)))
[X∗u(θ, φd(θ))− E[φd(θ), θ]] (51)

Where the third equality holds by (19), the fourth equality holds by (54), and the last equality holds by

(18). Since (50) and (51) means when X∗u(θ, φd(θ)) ≤ E[φd(θ), θ], X
∗
u(θ, φd(θ))−E[φd(θ), θ] is strictly
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increasing in θ, therefore for any θ′ < θ,

X∗u(θ, φd(θ)) ≤ E[φd(θ), θ]⇒ X∗u(θ′, φd(θ
′)) < E[φd(θ

′), θ′] (52)

By assumption of the Lemma, X∗u(1, φd(1)) = X∗u(1, 0) = 1
2 +

√
1
4 − c > E[Θ] ≡ E[0, 1] = E[φd(1), 1].

Now we consider two cases.

Case 1: X∗u(θ̂, φd(θ̂)) > E[φd(θ̂), θ̂]: then (52) and X∗u(1, φd(1)) > E[φd(1), 1] imply that

X∗u(θ, φd(θ)) > E[φd(θ), θ] for any θ ∈ [θ̂, 1], then θd = θ̂.

Case 2: X∗u(θ̂, φd(θ̂)) ≤ E[φd(θ̂), θ̂]: then since X∗u(1, φd(1)) > E[φd(1), 1], there exists θd ∈ [θ̂, 1)

such that X∗u(θd, φd(θd)) = E[φd(θd), θd]. (52) implies that X∗u(θ, φd(θ)) < E[φd(θ), θ] for θ < θd and

X∗u(θ, φd(θ)) > E[φd(θ), θ] for θ > θd. �

Proof of Lemma 2: To show that Ωd is incentive compatible, for m ∈M+
q ,

wq(m)

1− wq(m)
= lim

ε

Pr([φd(m+ ε), φd(m− ε)])
Pr([m− ε,m+ ε])

=
−φ̇d(m)f(φd(m))

f(m)
=

w−(m− φd(m))

1− w−(m− φd(m))
(53)

where the first equality holds because of the continuously decreasing message rule, and the third

equality holds by (19). Therefore, wq(m) = w−(m − φd(m)) and Vq(m) = c, thus condition (b) of

Lemma 3 is satisfied.

X(m0
q , u), X(m, t) and X(m, l) for m ∈ M+

q are clearly sequentially rational given the message

rule. For m ∈M+
q ,

X(m,u) = X∗u(m,φd(m)) = w−(m− φd(m))φd(m) + (1− w−(m− φd(m)))m

= wq(m)X(m, l) + (1− wq(m))X(m, t)

is also sequentially rational. For any m ∈M+
q = (θd, 1],

X(m,u) = X∗u(m,φd(m)) > E[φd(m),m] > E[φ(θd), θd]

= X(m0
q , u) > θd > φd(m) = X(m, l)

where the first and second inequalities holds because by the definition of θd, X
∗
u(θ, φd(θ)) > E[φd(θ), θ]

for any θ ∈ (θd, 1], then by (51) E[φd(θ), θ] is strictly increasing for θ ∈ (θd, 1]. Therefore, condition

(a) of Lemma 3 is satisfied, and thus Ωd is incentive compatible with the inspection rule specified

by (25). Since c < 1
4 implies 2

√
c < 1 = 1 − φd(1), so θ̂ < 1, and E[Θ] < 1

2 +
√

1
4 − c implies

X∗u(1, φd(1)) > E[0, 1], so θd < 1. Then θd = φd(θd) > 0 because φd is strictly decreasing.
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Since Vq(m) = c for any m ∈ M+
q , Lemma 4 implies EUDM (Ωd) = EUUDM (Ωd) = EU IDM (Ωd). To

show that EUDM (Ωd) > −c,

EUDM (Ωd) = EU IDM (Ωd)

=Pr([θd, θd])E[θd, θd]
2 +

∫
[0,θd)∪(θd,1]

(θ2 − c)dF (θ)− E[θ2]

=− Pr([θd, θd])V ar([θd, θd])− (1− Pr([θd, θd]))c

=− c+ Pr([θd, θd])[c− V ar([θd, θd])]

>− c+ Pr([θd, θd])[c− (θd − E[θd, θd])(E[θd, θd]− θd)]

≥− c

where the first inequality holds because of Bhatia–Davis inequality, and the second inequality holds

because definition of θd implies either X∗u(θd, θd) = E[θd, θd], which means (θd −E[θd, θd])(E[θd, θd]−

θd) = c, or θd − θd = 2
√
c, which means (θd − E[θd, θd])(E[θd, θd]− θd) ≤ c.

To show that EUDM (Ωd) > −V ar(Θ),

EUDM (Ωd) = EUUDM (Ωd)

=Pr([θd, θd])E[θd, θd]
2 +

∫ 1

(θd

X({θ}, u)2(f(θ) + φ̇d(θ)f(φd(θ)))dθ − E[θ2]

=Pr([θd, θd])E[θd, θd]
2 +

∫ 1

θd

X({θ}, u)2(f(θ) + φ̇d(θ)f(φd(θ)))dθ − (V ar(Θ) + E[Θ]2)

=Pr([θd, θd])(E[θd, θd]− E[Θ])2 +

∫ 1

θd

(X({θ}, u)− E[Θ])2(f(θ) + φ̇d(θ)f(φd(θ)))dθ − V ar(Θ)

>− V ar(Θ)

where the last equality holds because of sequential rationality of X, and the inequality holds because

c < 1
4 implies 2

√
c < 1 = 1− φd(1) and E[Θ] < 1

2 +
√

1
4 − c implies X∗u(1, φd(1)) > E[0, 1], so θd < 1.

�

Proof of Proposition 6: For an optimal mechanism Ω where E[θΩ, θΩ] >
θΩ+θΩ

2 , by Lemma 13 for

almost every m ∈ M+
q , Θt

q(m) = {X(m, s)} and Θl
q(m) = {X(m, l)} are two singleton sets, so there

exist Θ ⊆ [θΩ, 1] where Pr(Θ) = Pr([θΩ, 1]), Θ ⊆ [0, θΩ] where Pr(Θ) = Pr([0, θΩ]) and a bijective

matching function φ : Θ → Θ such that for m ∈ Θ, Θt
q(m) = {m} and Θl

q(m) = {φ(m)}. By Lemma

14,

m1 > m2 ⇐⇒ X(m1, t) > X(m2, t)
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⇐⇒ X(m1, l) < X(m2, l) ⇐⇒ φ(m1) < φ(m2)

so φ is a strictly decreasing function. Since Ω is optimal, wq(m) = w−(m−φ(m)), so (53) implies that

φ must the a solution of (19), so φ = φd with almost identical domain.

Lemma 16 implies (θΩ − E[θΩ, θΩ])(E[θΩ, θΩ] − θΩ) = c, which combines with E[θΩ, θΩ] >
θΩ+θΩ

2

implies that X∗u(θΩ, θΩ) = E[θΩ, θΩ]. By Lemma 1 there exists a unique θd such that X∗u(θd, φ(θd)) =

E[φd(θd), θd], so θΩ = θd and θΩ = φ(θd) = θd.

Therefore, Ω and Ωd are both characterized by the two cutoffs θd, θd and matching function φd,

which is defined for almost the same set of types, thus they are equal almost everywhere.

Q.E.D.

Proof of Proposition 7: We claim that for any m,m′ ∈Mq such that P (m) < 1 and P (m′) < 1,

X(m,u) = X(m′, u) and P (m) = P (m′). Suppose contrary to the claim, X(m′, u) > X(m,u). Then

since X(m,u) = E[Θu
q (m)], there exists θ ≥ X(m,u) such that mq(θ) = m. Since (30) implies

[1 − P (m)][X(m,u) − θ] ≥ [1 − P (m′)][X(m′, u) − θ], thus P (m) > P (m′). Similarly, there exists

θ ≤ X(m,u) such that mq(θ) = m, and (30) implies [1−P (m)][X(m,u)−θ] ≥ [1−P (m′)][X(m′, u)−θ],

thus P (m) < P (m′), contradiction. Therefore, it must be the case that X(m,u) = X(m′, u), which by

(30) implies that P (m) = P (m′).

We claim that if there exists m̃ ∈Mq such that P (m̃) = 1, then P (m) = 1 for almost everym ∈Mq.

Suppose Contrary to the claim, there exists positive measure subset Θ̂ ⊆ Θ such that P (mq(θ)) < 1

for any θ ∈ Θ̂, then the first claim implies that X(mq(θ), u) = E[Θ̂], and since Pr(Θ̂) > 0, there

exists θ ∈ Θ̂ such that θ > E[Θ̂] = X(mq(θ), u), but then [1 − P (mq(θ)][X(mq(θ), u) − θ] < 0 =

[1− P (m̃)][X(m̃, u)− θ], mq(θ) is not optimal for θ, contradiction.

The first two claims implies that P (m) = P̂ for almost every m ∈ Mq, where hatP is a constant,

and if hatP < 1, X(m,u) = E[Θ] for almost every m ∈ Mq. Since P (m) = P (m′), (28) and (29)

imply that vq(m) = Vq(m
′) = V ar(Θu

q (m)) = V ar(Θu
q (m′)) = V ar(Θ). Therefore, If c > V ar(Θ),

then c > vq(m) and P (m) = 0 for almost every m ∈ Mq, and the mechanism is uninformative; if

c < V ar(Θ), then c < vq(m) and P (m) = 1 for almost every m ∈ Mq, the mechanism is state-

verifying.

Q.E.D.

Proof of Proposition 8: Suppose c ≥ V ar(Θ), then EU sDM = V ar(Θ). Consider an uninformative
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mechanism Ω under lie-detection technology, where mq(θ) = m0
q = Θ for any θ ∈ Θ and P (m0

q) = 0,

X(m0
q , u) = E[Θ]. It is clear that such mechanism is incentive compatible, and EUDM (Ω) = V ar(Θ) =

EU sDM . Therefore, EUDM (Ω∗) ≥ EUDM (Ω) = EU sDM .//

Suppose c < V ar(Θ), then c < V ar(Θ) < (1 − EΘ)(E(Θ) − 0) ≤ 1
4 , where the second inequality

holds by Bhatia–Davis inequality. Since c < (1−EΘ)(E(Θ)− 0), we have 1
2 −

√
1
4 − c < E(Θ) < 1

2 +√
1
4 − c, thus Assumption 1 is satisfied, and by Lemma 2, Ωd is incentive compatible with EUDM (Ωd) <

c. Therefore, EUDM (Ω∗) ≥ EUDM (Ωd) > c = EU sDM .

Q.E.D.

33



Appendix B

This Appendix provides results that facilitate proofs in Appendix A.

Below are some definitions and terminologies that are useful for proving the results. For d ∈ [2
√
c, 1],

let

h(d) =
w−(d)

1− w−(d)
(54)

be the required liar to truth-teller ratio to maintain incentive for DM to inspect a message. It can be

verified that h(.) is a strictly decreasing and strictly convex function, with limd→2
√
c h
′(d) = −∞ and

limd→2
√
c h
′′(d) = +∞.

We say θ is essentially revealed upon inspection in Ω if xdΩ(θ) = θ.

The following Proposition establishes the necessary and sufficient conditions of an incentive com-

patible mechanism.

Lemma 3 Let q and X be a pair of message and action rule that satisfies (i) - (ii) of Proposition 1, X

satisfies DM’s sequential rationality (5) given q, and let m0
q be the (potentially non-exist) uninspected

message. Then there exists an inspection rule P (.) on the set of inspected messages M+
q such that

(q, P,X) is incentive compatible if and only if for any m,m′ ∈M+
q :

(a) X(m, l) ≤ X(m0
q , u) < X(m′, u) if m0

q exists; X(m, l) < X(m′, u) otherwise;

(b) wq(m)(1−wq(m))(X(m, t)−X(m, l))2


= c if X(m, l) < X(m0

q , u)

≥ c if X(m, l) = X(m0
q , u)

; If m0
q does not exists, replace

X(m0
q , u) with supm′∈M+

q
X(m′, l).

In particular, P (m) =
u(X(m,u))−u(x0

q)

u(X(m,u))−u(X(m,l)) , where x0
q = X(m0

q , u) if m0
q exists;

x0
q ∈ [supm′∈M+

q
X(m′, l), infm′′∈M+

q
X(m′′, u)] if m0

q does not exist and vq(m) = c for all m ∈ M+
q ;

x0
q = maxm′∈M+

q
X(m′, l) otherwise.

Proof of Lemma 3: Given (i) of Proposition 1 we have X(m, t) ≥ X(m, l), and for any m ∈

M+
q , incentive compatibility requires X(m, t) > X(m, l), for otherwise value of inspection Vq(m) =

wq(m)(1 − wq(m))(X(m, t) − X(m, l))2 = 0, violating DM’s sequential rationality. (5) then implies

that X(m, t) > X(m,u) > X(m, l) for any m ∈ M+
q . (i) of Proposition 1 then imply that if m0

q

exists, P (m)u(X(m, l)) + (1 − P (m))u(X(m,u)) = P (m0
q)u(X(m0

q , l)) + (1 − P (m0
q))u(X(m0

q , u)) =

u(X(m0
q , u)), which means P (m) =

u(X(m,u))−u(X(m0
q ,u))

u(X(m,u))−u(X(m,l)) . Since sender’s utility u(.) is strictly increas-

ing, there exists such P (m) ∈ (0, 1] if and only if X(m, l) ≤ X(m0
q , u) < X(m,u), which holds for all

m,m′ ∈ M+
q , so X(m, l) ≤ X(m0

q , u) < X(m′, u). If X(m, l) < X(m0
q , u), it must be P (m) ∈ (0, 1),
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so sequentially rational inspection requires Vq(m) = c; If X(m, l) = X(m0
q , u), P (m) = 1, sequentially

rational inspection requires Vq(m) ≥ c.

If m0
q does not exist, then for any m,m′ ∈ M+

q , P (m)u(X(m, l)) + (1 − P (m))u(X(m,u)) =

P (m′)u(X(m′, l)) + (1− P (m′))u(X(m′, u)) = u(X(m′, u)), which can be achieved with some strictly

positive P (.) if and only if supm′∈M+
q
X(m′, l) < infm′′∈M+

q
X(m′′, u). Sequentially rational inspec-

tion requires Vq(m) = c for any m such that P < 1, which must be the case when X(m, l) <

supm′∈M+
q
X(m′, l). Vq(m) ≥ c and P (m) = 1 is allowed if and only if X(m, l) = maxm′∈M+

q
X(m′, l).

Q.E.D.[2mm]

Given an mechanism Ω, DM’s expected payoff of Ω when every messages are ex-post uninspected

and actions X(m,u) are induced is

EUUDM (Ω) =

∫
M+

q

Pr(Θu
q (m))X(m,u)2dm+ Pr(Θu

q (m0
q))X(m0

q , u)2 − E[θ2]

=

∫
[0,1]

x2dGuΩ(x)− E[θ2] (55)

Where

GuΩ(x) =

∫
Mq

∫
Θuq (m)

1(X(m,u) ≤ x)dF (θ)dm (56)

is the distribution of induced actions when messages are ex-post uninspected; DM’s expected payoff

when every messages in M+
q are ex-post inspected and actions X(m, t) (X(m, l)) are induced when

sender is truthful (lying) is

EU IDM (Ω) =

∫
M+

q

Pr(Θu
q (m))[wq(m)X(m, l)2 + (1− wq(m))X(m, t)2 − c]dm

+ Pr(Θu
q (m0

q))X(m0
q , u)2 − E[θ2]

=(1− Pr(Θu
q (m0

q)))

∫
[0,1]

(x2 − c)dGiΩ(x) + Pr(Θu
q (m0

q))X(m0
q , u)2 − E[θ2] (57)

where

GiΩ(x) =
1

1− Pr(Θ0
q)

∫
M+

q

∑
s=t,l

∫
Θsq(m)

1(X(m, s) ≤ x)]dF (θ)dm (58)

is the distribution of actions induced by messages with positive probability of inspection, when those

messages are ex-post inspected.

Lemma 4 Let Ω be an mechanism such that X satisfies (5) given q, and Vq(m) = c almost everywhere

for m ∈M+
q , then EUDM (Ω) = EUUDM (Ω) = EU IDM (Ω).
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Proof of Lemma 4: From equation (10),

EUDM (Ω)

=−
∫

Θ

∫
Mq

q(m|θ)[(1− P (m))(X(m,u)− θ)2 + P (m)
∑
s=t,l

1(θ ∈ Θs(m))[(X(m, s)− θ)2 + c]]dmdF (θ)

=−
∫
M+

q

[(1− P (m))

∫
Θuq (m)

(X(m,u)− θ)2dF (θ) + P (m)
∑
s=t,l

∫
Θsq(m)

[(X(m, s)− θ)2 + c]dF (θ)]dm

−
∫

Θuq (m0
q)

(X(m0
q , u)− θ)2dF (θ)

=

∫
M+

q

[(1− P (m))

∫
Θuq (m)

dF (θ)X(m,u)2 + P (m)
∑
s=t,l

∫
Θsq(m)

dF (θ)[X(m, s)2 − c]]dm

+

∫
Θuq (m0

q)
dF (θ)X(m0

q , u)2 − E[θ2]

=

∫
M+

q

Pr(Θu
q (m))[(1− P (m))X(m,u)2 + P (m)[wq(m)X(m, l)2 + (1− wq(m))X(m, t)2 − c]]dm

+ Pr(Θu
q (m0

q))X(m0
q , u)2 − E[θ2] (59)

where the second equality holds because of (2) - (4), the third equality holds because (5) implies

−
∫

Θsq(m)(X(m, s)−θ)2dF (θ) =
∫

Θsq(m)X(m, s)2dF (θ)−
∫

Θsq(m) θ
2dF (θ) for each (m, s) ∈Mq×{t, l, u};

the forth equality holds because wq(m)Pr(Θu
q (m)) = Pr(Θl

q(m)) and (1 − wq(m))Pr(Θu
q (m)) =

Pr(Θt
q(m)).

Since X(m,u) = wq(m)X(m, l) + (1−wq(m))X(m, t), so for any m ∈M+
q , wq(m)X(m, l)2 + (1−

wq(m))X(m, t)2−X(m,u)2 = wq(m)(1−wq(m))(X(m, t)−X(m, l))2 ≡ Vq(m). Therefore, Vq(m) = c

implies that

X(m,u)2 = wq(m)X(m, l)2 + (1− wq(m))X(m, t)2 − c (60)

holds almost everywhere for m ∈M+
q , thus

EUDM (Ω) =

∫
M+

q

Pr(Θu
q (m))X(m,u)2dm+ Pr(Θu

q (m0
q))X(m0

q , u)2 − E[θ2]

=EUUDM (Ω)

and

EUDM (Ω) =

∫
M+

q

Pr(Θu
q (m))[wq(m)X(m, l)2 + (1− wq(m))X(m, t)2 − c]dm

+ Pr(Θu
q (m0

q))X(m0
q , u)2 − E[θ2]
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=EU IDM (Ω)

�

Lemma 5 For any ε > 0, suppose there is a mechanism Ω such that X satisfies (5) given q, wq(m) =

w−(X(m, t) − X(m, l)) almost everywhere for m ∈ M+
q , supm∈M+

q
X(m, l) < X(m0

q , u) + ε and

infm∈M+
q
X(m,u) > X(m0

q , u) − ε, then there exists an incentive compatible mechanism Ω̂ such that

EUDM (Ω̂) > EUDM (Ω)− 4ε2.

Proof of Lemma 5: Let Mu = {m ∈ M+
q : X(m0

q , u) − ε < X(m,u) ≤ X(m0
q , u)} be the set of

inspected messages that violate X(m0
q , u) < X(m,u). Define x̂ that solves

Pr(Θ0
q ∪Θu

q (Mu))(x̂− E[Θ0
q ∪Θu

q (Mu)]) =

∫
m∈M+

q :X(m,l)≥x̂
Pr(Θl

q(m))(X(m, l)− x̂)dm (61)

If supm∈M+
q
X(m, l) > E[Θ0

q ∪ Θu
q (Mu)], and x̂ = E[Θ0

q ∪ Θu
q (Mu)] otherwise. Let M l = {m ∈ M+

q :

X(m, l) ≥ x̂}. Since X satisfies (5), we have

E[Θ0
q ∪Θu

q (Mu) ∪Θl
q(M

l)] = x̂ ∈ (X(m0
q , u)− ε,X(m0

q , u) + ε) (62)

and

X(m,u) > x̂ > X(m, l) for any m ∈M+
q /(M

u ∪M l) (63)

Now for each m ∈ M l define ŵ = w−(X(m, t)− x̂) be the new required weight of liars given that

the liar-induced action of m is x̂. Since w−(.) is a decreasing function, wq(m) = w−(X(m, t)−X(m, l))

and X(m, l) ≥ x̃ for m ∈ M l, so ŵ(m) ≤ wq(m). Let p̂ =
∫
M l

ŵ(m)
1−ŵ(m)

∫
Θtq(m) dF (θ)dm be the total

mass of liars required to be pooled with truth-tellers in M l, given that liar-induced actions are x̂.

ŵ(m) ≤ wq(m) implies p̂ ≤ Pr(Θl
q(M

l)) =
∫
M l

wq(m)
1−wq(m)

∫
Θtq(m) dF (θ)dm.

Let Θ̂ = Θ0
q ∪ Θu

q (Mu) ∪ Θl
q(M

l) be the pool of modifying types. Let z = Pr(Θ̂)−p̂
P r(Θ̂)

. Assign an

arbitrary strict ranking r : M l → R to the message set M l. Then for any m ∈M l, let

z−(m) = z +
1

Pr(Θ̂)

∫
m′∈M l:r(m′)<r(m)

ŵ(m′)

1− ŵ(m′)

∫
Θtq(m

′)
dF (θ)dm′ (64)

z+(m) = z−(m) +
1

Pr(Θ̂)

ŵ(m)

1− ŵ(m)

∫
Θtq(m)

dF (θ) (65)

Define an modified messaging and action rules q̂, X̂ where other things remain unchanged, except the

set of messages Mu is off-path; the uninspected message is modified to m0
q̂ = Θ̂(z) with the set of sender
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identical to the statement, where Θ̂(z) is a mean preserving division of Θ̂ so that E[Θ̂(z] = E[Θ̂] = x̂

and Pr(Θ̂(z)) = zPr(Θ̂) = Pr(Θ̂)−p̂; For anym ∈M l, the set of truth-tellers remain unchanged, while

the set of liars is modified to Θl
q̂(m) = Θ̂(z+(m))/int(Θ̂(z−(m))), a mean preserving division of Θ̂ where

int(X) is the interior of set X, so that E[Θl
q̂(m)] = x̂ and the set has measure ŵ(m)

1−ŵ(m)

∫
Θtq(m) dF (θ).

The sequentially rational actions for the modified uninspected messages m0
q̂ is

X̂(m0
q̂ , u) = E[Θ̂(z)] = x̂ (66)

and for m ∈M l,

X̂(m, t) = X(m, t)

X̂(m, l) = E[Θl
q̂(m)] = x̂ (67)

X̂(m,u) = ŵ(m)x̂+ (1− ŵ(m))X(m, t)

where X(m, t) > X(m, l) ≥ x̂. (63), (66) and (67) imply that

X̂(m,u) > X̂(m0
q̂ , u) ≤ X̂(m, l) for any m ∈M+

q̂ (68)

so (q̂, X̂) satisfies (a) of Lemma 3. Furthermore, by the definition of Θl
q̂(m) for m ∈M l, we have

wq̂(m) = ŵ(m) = w−(X̂(m, t)− X̂(m, l)) (69)

and thus

Vq̂(m) = c (70)

so (q̂, X̂) satisfies (b) of Lemma 3. Therefore, there exists P̂ such that Ω̂ = (q̂, P̂ , X̂) is incentive

compatible.

To compare DM’s ex-ante payoffs, since Vq(m) = Vq̂(m) = c, (60) holds for both mechanisms, thus

(59) implies

EUDM (Ω) =

∫
M+

q /M l

Pr(Θu
q (m))X(m,u)2dm+ Pr(Θ0

q)X(m0
q , u)2 − E[θ2]

+

∫
M l

[Pr(Θl
q(m))X(m, l)2 + Pr(Θt

q(m))X(m, t)2 − Pr(Θu
q (m))c]dm (71)

and

EUDM (Ω̂) =

∫
M+

q /(M l∪Mu)
Pr(Θu

q (m))X(m,u)2dm+ Pr(Θ̂(z))x̂2 − E[θ2]
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+

∫
M l

[Pr(Θ̂l
q(m))x̂2 + Pr(Θt

q(m))X(m, t)2 − Pr(Θ̂u
q (m))c]dm (72)

so

EUDM (Ω)− EUDM (Ω̂)

=

∫
Mu

Pr(Θu
q (m))X(m,u)2dm+ Pr(Θ0

q)X(m0
q , u)2 +

∫
M l

Pr(Θl
q(m))(X(m, l)2 − c)dm

− Pr(Θ̂(z))x̂2 −
∫
M l

Pr(Θ̂l
q(m))(x̂2 − c)dm

=

∫
Mu

Pr(Θu
q (m))X(m,u)2dm+ Pr(Θ0

q)X(m0
q , u)2 +

∫
M l

Pr(Θl
q(m))X(m, l)2dm

− Pr(Θ̂)x̂2 + c

∫
M l

[Pr(Θ̂l
q(m))− Pr(Θl

q(m))]dm

≤
∫
Mu

Pr(Θu
q (m))X(m,u)2dm+ Pr(Θ0

q)X(m0
q , u)2 +

∫
M l

Pr(Θl
q(m))X(m, l)2dm− Pr(Θ̂)x̂2

=

∫
Mu

Pr(Θu
q (m))[X(m,u)2 − x̂2]dm+

∫
M l

Pr(Θl
q(m))[X(m, l)2 − x̂2]dm

+ Pr(Θ0
q)[X(m0

q , u)2 − x̂2]

=

∫
Mu

Pr(Θu
q (m))[X(m,u)− x̂]2dm+

∫
M l

Pr(Θl
q(m))[X(m, l)− x̂]2dm

+ Pr(Θ0
q)[X(m0

q , u)− x̂]2

<4Pr(Θ̂)ε2 ≤ 4ε2 (73)

where the first inequality holds because
∫
M l Pr(Θ̂

l
q(m)) − Pr(Θl

q(m))dm = p̂ − Pr(Θl
q(M

l)) ≤ 0;

the third equality holds because Θ̂ = Θ0
q ∪ Θu

q (Mu) ∪ Θl
q(M

l); the fourth equality holds because (5)

implies that
∫
Mu Pr(Θ

u
q (m))X(m,u)dm+

∫
M l Pr(Θ

l
q(m))X(m, l)dm+ Pr(Θ0

q)X(m0
q , u) = E[Θ̂] = x̂;

the second inequality holds because |X(m, s) − X(m0
q)| < ε for m ∈ M s, s ∈ {u, l} by definitions of

M l,Mu and |x̂−X(m0
q)| < ε by (62); the last inequality holds because Pr(Θ̂) ≤ 1. �

Lemma 6 dx∗u(xt,xl)
dxt

> 0 and dx∗u(xt,xl)
dxl

< 0.

Proof of Lemma 6:

dx∗u(xt, xl)

dxt
=1− w−(xt − xl)−

dw−(xt − xl)
dxt

[xt − xl]

=
1

2
+

√
1

4
− c

(xt − xl)2
+ (

1

4
− c

(xt − xl)2
)−0.5 c

(xt − xl)2

>0
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dx∗u(xt, xl)

dxl
=w−(xt − xl)−

dw−(xt − xl)
dxl

[xt − xl]

=
1

2
−

√
1

4
− c

(xt − xl)2
− (

1

4
− c

(xt − xl)2
)−0.5 c

(xt − xl)2

=(
1

4
− c

(xt − xl)2
)−0.5[

1

2

√
1

4
− c

(xt − xl)2
− (

1

4
− c

(xt − xl)2
)− c

(xt − xl)2
]

=(
1

4
− c

(xt − xl)2
)−0.5[

1

2

√
1

4
− c

(xt − xl)2
− 1

4
]

<0

where the last inequality holds because
√

1
4 −

c
(xt−xl)2 <

1
2 . �

Lemma 7 Let (x0, x1, x2, x̂, δ) ∈ [0, 1]5. If x1 > x̂, x̂ > x1+x2
2 and (x1−x0)(x0−x2)−(x1−x̂)(x̂−x2) >

δ > 0, then x̂ > x0 + δ.

Proof of Lemma 7: First we have

(x̂− x0)(x̂+ x0 − µ1 − µ2) = (x1 − x0)(x0 − x2)− (x1 − x̂)(x̂− x2) > δ (74)

It must be the case that x̂ > x0, for otherwise x0 ≥ x̂ > x1+x2
2 would implies that LHS of (74) is

non-positive. x1 > x̂ implies that x̂+ x0 − µ1 − µ2)1, therefore x̂− x0 > δ. �

For an Ω, let θ
0

= inf{θ : Pr([0, θ] ∩Θ0
q) = Pr(Θ0

q)} and θ0 = sup{θ : Pr([θ, 1] ∩Θ0
q) = Pr(Θ0

q)}

be the probabilistic upper bound and lower bound of the set of uninspected types, µ = E[Θ0
q ] be the

mean of Θ0
q .

Lemma 8 In an optimal mechanism Ω, (θ
0 − µ)(µ− θ0) ≤ c .

Proof of Lemma 8: Suppose contrary to the claim, (θ
0 − µ)(µ − θ0) > c, then there exists δ > 0

such that (θ
0 − µ)(µ− θ0)− c > δ, and for any small enough ε > 0 there exist Θ1,Θ2 ⊆ Θ0

q such that

Pr(Θ1) = Pr(Θ2) = ε and

(µ1 − µ)(µ− µ2)− c > δ (75)

where µ1 ≡ E[Θ1] and µ2 ≡ E[Θ2]. Let ŵ = w−(µ1 − µ2), where w−(.) is the minimum liar weight

function defined in (15), which is well defined because (75) implies that µ1 − µ2 > 2
√
c. Create a

mean-preserving division of Θ2, Θ2( ŵ
1−ŵ ), so E[Θ2( ŵ

1−ŵ )] = E[Θ2] and Pr(Θ2( ŵ
1−ŵ )) = ŵ

1−ŵPr(Θ2).

Now define an modified mechanism Ω̂ = (q̂, P̂ , X̂) where other things remain unchanged, except

the uninspected message is modified to m0
q̂ = Θ0

q̂ ≡ Θ0
q/(Θ1∪Θ2( ŵ

1−ŵ )), with the set of sender identical
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to the statement Θ0
q̂ . An inspected message m̂ = Θ1 is added, with truthful senders Θt

q̂(m̂) = Θ1 and

lying senders Θl
q̂(m̂) = Θ2( ŵ

1−ŵ ).

The sequentially rational actions for the modified message m̂ are

X̂(m̂, t) = E[Θ1] = µ1

X̂(m̂, l) = E[Θ2(
ŵ

1− ŵ
)] = µ2

X̂(m̂, u) = E[Θ1 ∪Θ2(
ŵ

1− ŵ
)] = ŵµ2 + (1− ŵ)µ1

the last equality holds because
Pr(Θ2( ŵ

1−ŵ ))

Pr(Θ2( ŵ
1−ŵ ))+Pr(Θ1)

=
Pr(Θ2( ŵ

1−ŵ ))

Pr(Θ2( ŵ
1−ŵ ))+Pr(Θ2)

= ŵ. The sequentially rational

action for the modified message m0
q̂ is

X̂(m0
q̂ , u) = E[Θ0

q/(Θ1 ∪Θ2(
ŵ

1− ŵ
))]

The definition of ŵ implies that Vq(m̂) = ŵ(1 − ŵ)(µ1 − µ2)2 = c, so (b) of Lemma 3 is satisfied for

m̂. The above equality also implies

(µ1 − X̂(m̂, u))(X̂(m̂, u)− µ2) = c (76)

and since ŵ < 1
2 , we have X̂(m̂, u) > µ1+µ2

2 , so Lemma 7, (75) and (76) imply

X̂(m̂, u) > µ+ δ (77)

By sequential rationality,

Pr(Θ1 ∪Θ2(
ŵ

1− ŵ
))X̂(m̂, u) + Pr(Θ0

q/(Θ1 ∪Θ2(
ŵ

1− ŵ
)))X̂(m0

q̂ , u) = Pr(Θ0
q)µ (78)

where Pr(Θ1 ∪Θ2( ŵ
1−ŵ )) = ε+ ŵ

1−ŵ ε = ε
1−ŵ . Rearranging (78) yields

X̂(m0
q̂ , u) =µ0 −

ε

(1− ŵ)(Pr(Θ0
q)− ε

1−ŵ )
(X̂(m̂, u)− µ)

>µ0 −
2ε

Pr(Θ0
q)− 2ε

(79)

because ŵ < 0.5 and X̂(m̂, u)− µ < 1. Now we have

X̂(m0
q̂ , u) < µ < X̂(m̂, u) (80)

and for any unmodified on-path message m ∈ M+
q , incentive compatibility of the original mechanism

means X̂(m,u) = X(m,u) > µ > X̂(m0
q̂ , u), so

inf
m∈M+

q̂

X̂(m,u) > X̂(m0
q̂ , u) (81)
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Since X̂(m̂, l) = µ2 < ŵµ2+(1−ŵ)µ1 = X̂(m0
q̂ , u) and supm∈M+

q
X(m, l) ≤ µ by incentive compatibility

of the original mechanism, so (79) implies

sup
m∈M+

q̂

X(m, l) < X̂(m0
q̂ , u) +

2ε

Pr(Θ0
q)− 2ε

(82)

Since the original mechanism is optimal, wq(m) = w−(X(m, t)−X(m, l)) hold almost everywhere for

unmodified message m ∈ M+
q . For the modified message, wq̂(m̂) = w−(µ1 − µ2) = w−(X̂(m̂, t) −

X̂(m̂, l)), so we have

wq̂(m) = w−(X̂(m, t)− X̂(m, l)) (83)

hold almost everywhere at M+
q̂ .

To compare DM’s payoffs, since Vq(m) = Vq̂(m) = c, by Lemma 4, EUDM (Ω) = EUUDM (Ω) and

EUDM (Ω̂) = EUUDM (Ω̂), so

EUDM (Ω̂)− EUDM (Ω)

=
ε

1− ŵ
X̂(m̂, u)2 + [Pr(Θ0

q)−
ε

1− ŵ
]X̂(m0

q̂ , u)2 − Pr(Θ0
q)(µ)2

=
ε

1− ŵ
[X̂(m̂, u)− µ]2 + [Pr(Θ0

q)−
ε

1− ŵ
][X̂(m0

q̂ , u)− µ]2

>
ε

1− ŵ
δ2 > 2δ2ε (84)

where the second equality holds because ε
1−ŵ X̂(m̂, u) + [Pr(Θ0

q)− ε
1−ŵ ]X̂(m0

q̂ , u)− Pr(Θ0
q)(µ) = 0 by

(78); the first inequality holds because of (77), and the last inequality hold because ŵ < 0.5. Finally,

given (81) - (83), Lemma 5 implies that there exist an incentive compatible mechanism Ω̃ such that

EUDM (Ω̃) > EUDM (Ω̂)−4( 2ε
Pr(Θ0

q)−2ε
)2, then by (84) EUDM (Ω̃)−EUDM (Ω) > 2δ2ε−4( 2ε

Pr(Θ0
q)−2ε

)2 > 0

for small enough ε, but it contradicts that Ω is an optimal mechanism. Therefore, we conclude that

(θ
0 − µ)(µ− θ0) ≤ c in an optimal mechanism. �

For an mechanism Ω such that Pr(Θ0
q) > 0, let θt = sup{θ : Pr([θ, 1] ∩Θt

q(M+
q )) = Pr(Θt

q(M+
q )}

and θ
l
q = sup{θ : Pr([0, θ] ∩Θl(M+

q )) = Pr(Θl
q(M+

q ))} be the probabilistic lower bound of the set of

inspected truthful types and probabilistic upper bound of the set of inspected lying types.

Lemma 9 In an optimal mechanism Ω, θt ≥ θ0
.

Proof of Lemma 9: Suppose contrary to the claim, θt < θ
0
, then there exists δ > 0 such that

θt < θ
0− δ. Let Mt = {m ∈M+

q : ∃θ ∈ Θt
q(m) such that θ < θ

0− δ} be the set of messages containing
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truthful types below θ
0− δ, and Θt = {θ : ∃m ∈Mt such that θ ∈ Θt

q(m), θ < θ
0− δ and θ ≤ X(m, t)}

be the set of such truthful types with a weaker higher induced action. We have Pr(Θt) > 0 and there

exist positive measure subset of uninspected types Θ0 ⊆ Θ0
q such that for any θt ∈ Θt and µ ≡ E[Θ0],

µ− θt > δ (85)

Denote a = Pr(Θt)
Pr(Θtq(Mt))

> 0, and let Ma
t = ∩M ⊆Mt :

Pr(Θt∩Θtq(M))

Pr(Θtq(M)) ≥ a be the subset containing every

message in Mt where proportion of truthful types within Θt is no less than a. Since Pr(Ma
t ) > 0, for

any ε > 0 there is positive measure subset M ′ ⊆Ma
t such that for any m,m′ ∈M ′ and s ∈ {t, l, u},

|X(m, s)−X(m′, s)| < ε (86)

and Pr(M ′) ≤ ε (If every m ∈ Ma
t is such that Pr(m) > ε, then we can take any of such message m

and divide it into two messages m1,m2 with exact same induced actions and Pr(m1) = ε, Pr(m2) =

Pr(m)− ε and take M ′ = {m1}). Therefore, M ′ satisfies Pr(M ′) ∈ (0, ε),
Pr(Θ′∩Θtq(M

′))

Pr(Θtq(M
′)) ≥ a.

Let Θ′ = Θt
q(M

′) ∩ Θt be the set of truthful types in M ′ that satisfies (85) and θ < X(m, t) for

θ ∈ Θt
q(m) ∩Θ′. Since M ′ ⊆Ma

t , we have

Pr(Θ′) ≥ aPr(Θt
q(M

′)) (87)

Let Θl = Θl
q(M

′), Θt = Θt
q(M

′) and Θu = Θl ∪ Θt be the aggregate set of truth-tellers, liars and

senders of M ′ ;Eu = E[Θu], Et = E[Θt], El = E[Θl], E′ = E[Θ′] be their corresponding expected

values, and zt = Pr(Θt)
Pr(Θu) , zl = Pr(Θl)

Pr(Θu) = 1− zt, z′ = Pr(Θ′)
Pr(Θu) be their corresponding ratios of measure to

set of senders Θu.Since Θ′ ⊆ Θt,

E′ < µ− δ (88)

and

E′ ≤ Et (89)

Since the original mechanism is optimal, we have (X(m, t) − X(m,u))(X(m,u) − X(m, l)) = c and

wq(m) = w−(X(m, t)−X(m, l)) ≤ 0.5 almost everywhere at M ′, so |Es−X(m, s)| < ε for any m ∈M ′

and s = t, l, u imply

|(1− zt)zt(Et − El)2 − c| ≡ |(Et − Eu)(Eu − El)− c| < 4ε2 (90)

zt ≥ 0.5 (91)
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For any z ∈ [0,∞), let Et(z) = ztEt−z′E′+zµ
zt−z′+z be the expected value of the set (Θt

q(M
′)/Θ′)∪Θz, where

Θz is a set with expected value µ and measure zPr(Θu), and Eu(z) = ztEt−z′E′+zµ+(1−zt)El
1−z′+z be the

expected values of (Θu
q (M ′)/Θ′) ∪Θz. Define ẑ that solves

(1− zt)(zt − z′ + z)

(1− z′ + z)2
(Et(z)− El)2 ≡ (Et(z)− Eu(z))(Eu(z)− El) = c (92)

zt + z − z′ ≥ 1− zt (93)

By definition of Et(z),

Et(z)− Et =
z

zt
(µ− E′)− z − z′

zt
(Et(z)− E′)

≥ z
zt
δ − z − z′

zt
(Et(z)− E′)

≥aδ − z − z′

zt
(Et(z)− E′) (94)

where the first inequality holds by (88)., the second inequality holds by (87). When z = z′, Et(z)−Et ≥

aδ, and (1−zt)zt = 1−zt)(zt−z′+z)
(1−z′+z)2 , so for small enough ε, (1−zt)(zt−z′+z)

(1−z′+z)2 (Et(z)−El)2 > (1−zt)zt(Et−

El + aδ)2 > (1− zt)zt(Et−El)2− 4ε2 > c; On the other hand, limz→∞
(1−zt)(zt−z′+z)

(1−z′+z)2 (Et(z)−El)2 →

0 < c. Therefore, for small enough ε there exists ẑ ∈ (z′,∞) that is solution to (92) and (113).

We claim that for small enough ε, Et(ẑ) − Et ≥ ε
1
3 . Suppose Et(ẑ) − Et < ε

1
3 , then (94) implies

aδ − ẑ−z′
zt (Et(ẑ)−E′) < ε

1
3 , and since Et(ẑ)−E′ ≤ 1, we have ẑ − z′ > zt(aδ − ε

1
3 ). Now (1− zt)zt −

(1−zt)(zt−z′+ẑ)
(1−z′+ẑ)2 = (1−zt)(ẑ−z′)[(ẑ−z′)zt+2zt−1]

(1−z′+ẑ)2 > (1−zt)zt
(1−z′+z)2 (ẑ − z′)2 > (1−zt)zt

(1+zt(aδ−ε
1
3 ))2

(zt(aδ − ε
1
3 ))2; and

(Et(ẑ)−El)2−(Et−El)2 < (Et−El+ε
1
3 )2−(Et−El)2 = 2ε

1
3 (Et−El)−ε

2
3 . Therefore, for small enough

ε, (1−zt)(zt−z′+z)
(1−z′+z)2 (Et(z)−El)2 < [(1−zt)zt− (1−zt)zt

(1+zt(aδ−ε
1
3 ))2

(zt(aδ−ε
1
3 ))2][(Et−El)2+2ε

1
3 (Et−El)−ε

2
3 ] <

(1− zt)zt(Et − El)2 − 4ε2 < c, but it contradicts to (92), so for small enough ε, we have

Et(ẑ)− Et ≥ ε
1
3 (95)

and by definition of Eu(z) and Eu, we have Eu(ẑ) − Eu = ẑ(µ − E′) − (ẑ − z′)(Eu(z) − E′) =

zt(Et(ẑ)− Et) + (ẑ − z′)(Et(ẑ)− Eu(ẑ)) > zt(Et(ẑ)− Et), then (91) and (95 imply

Eu(ẑ)− Eu ≥ 1

2
ε

1
3 (96)

Define a modified truth-tellers set Θ̂t = (Θt
q(M

′)/Θ′) ∪ Θ0(Pr(Θ
u)

Pr(Θ0) ẑ), where Θ0(Pr(Θ
u)

Pr(Θ0) ẑ) is a mean-

preserving division of Θ0 so that E[Θ0(Pr(Θ
u)

Pr(Θ0) ẑ)] = µ and Pr(Θ0(Pr(Θ
u)

Pr(Θ0) ẑ)) = ẑP r(Θu). Let Θ̂u =
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Θ̂t ∪Θl be the modified set of senders. As a results, we have

E[Θ̂t] =
ztPr(Θu)Et − z′Pr(Θu)E′ + ẑP r(Θu)µ

(zt − z′ + ẑ)Pr(Θu)
= Et(ẑ) (97)

Pr(Θ̂t) = (zt + ẑ − z′)Pr(Θu) = Pr(Θt) + (ẑ − z′))Pr(Θu) (98)

E[Θ̂u] = Eu(ẑ) (99)

Pr(Θ̂u) = Pr(Θu) + (ẑ − z′))Pr(Θu) (100)

Define the modified uninspected set Θ0
q̂ = (Θ0

q/ ∪Θ′)/Θ0(Pr(Θ
u)

Pr(Θ0) ẑ), so that

Pr(Θ0
q̂) = Pr(Θ0

q)− (ẑ − z′))Pr(Θu) (101)

and since Θ0
q̂ ∪ Θ̂u = Θ0

q ∪Θu, we have

Pr(Θ0
q̂)E[Θ0

q̂ ] + Pr(Θ̂u)Eu(ẑ) = Pr(Θ0
q)E[Θ0

q ] + Pr(Θu)Eu (102)

and thus

E[Θ0
q̂ ]− E[Θ0

q ] =
Pr(Θu)

Pr(Θ0
q)

(Eu(ẑ)− Eu) +
(ẑ − z′)Pr(Θu)

Pr(Θ0
q)

(Eu(ẑ)− E[Θ0
q̂ ])

≤ 1 + zmax − z′

Pr(Θ0
q)

Pr(Θu) (103)

where the inequality holds for zmax equals the larger root of (1−zt)(zt−z′+z)
(1−z′+z)2 = c, so (92) implies

ẑ ≤ zmax.

Now define an modified message and action rules q̂, X̂ where other things remain unchanged, except

the set of messages M ′ is off-path; The uninspected message is modified to m0
q̂ = Θ0

q̂ with the set of

senders identical to the statement, and an message m̂ = Θ̂t is added with the set of truthful senders

Θt
q̂(m̂) = Θ̂t, and the set of lying senders Θl

q̂(m̂) = Θl.

The sequentially rational actions for the modified message m̂ are

X̂(m̂, t) = E[Θ̂t] = Et(ẑ)

X̂(m̂, l) = E[Θl] = El

X̂(m̂, u) = E[Θ̂t ∪Θl) = Eu(ẑ)

The sequentially rational action for the modified uninspected message m0
q̂ is

X̂(m0
q̂ , u) = E[Θ0

q̂ ]
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For small enough ε, X̂(m̂, u) ≥ Et + ε
1
3 > infm∈M ′ X(m,u) − ε + ε

1
3 > infm∈M ′ X(m,u), and for

any unmodified on-path message m ∈ M+
q , incentive compatibility of the original mechanism means

X̂(m,u) = X(m,u) > µ > X̂(m0
q̂ , u), so

inf
m∈M+

q̂

X̂(m,u) > X̂(m0
q̂ , u) (104)

Since X̂(m̂, l) = El ≤ supm∈M ′ X(m, l) and supm∈M+
q
X(m, l) ≤ µ by incentive compatibility of the

original mechanism, so (103) implies

sup
m∈M+

q̂

X(m,u) < X̂(m0
q̂ , u) +

1 + zmax − z′

Pr(Θ0
q)

Pr(Θu) (105)

Since the original mechanism is optimal, wq(m) = w−(X(m, t) − X(m, l)) hold almost everywhere

for unmodified message m ∈ M+
q /M

′. For the modified message, (92) and (113) imply wq̂(m̂) =

w−(Et(ẑ)− El) = w−(X̂(m̂, t)− X̂(m̂, l)), so we have

wq̂(m) = w−(X̂(m, t)− X̂(m, l)) (106)

hold almost everywhere at M+
q̂ .

To compare DM’s payoffs, since Vq(m) = Vq̂(m) = c, by Lemma 4, EUDM (Ω) = EUUDM (Ω) and

EUDM (Ω̂) = EUUDM (Ω̂), so

EUDM (Ω̂)− EUDM (Ω)

=Pr(Θ0
q̂)E[Θ0

q̂ ]
2 + Pr(Θ̂u)Eu(ẑ)2 − Pr(Θ0

q)E[Θ0
q ]

2 − Pr(Θu)(Eu)2

=− Pr(Θ0
q)[(E[Θ0

q ]− E[Θ0
q̂ ])

2 + 2E[Θ0
q̂ ](E[Θ0

q ]− E[Θ0
q̂ ])]

+ Pr(Θu)[(Eu(ẑ)− Eu)2 + 2Eu(Eu(ẑ)− Eu)]

+ (ẑ − z′)Pr(Θu)[(Eu(ẑ)− E[Θ0
q̂ ])

2 + 2E[Θ0
q̂ ](E

u(ẑ)− E[Θ0
q̂ ])]

=− Pr(Θ0
q)(E[Θ0

q ]− E[Θ0
q̂ ])

2 + Pr(Θu)(Eu(ẑ)− Eu)2 + (ẑ − z′)Pr(Θu)(Et(ẑ)− E[Θ0
q̂ ])

2

>− Pr(Θ0
q)(

1 + zmax − z′

Pr(Θ0
q)

Pr(Θu))2 + Pr(Θu)
1

4
ε

2
3 (107)

Where the second equality holds by (100) and (101); the third equality holds by (102) and Eu(ẑ) >

Eu > E[Θ0
q̂ ]; the inequality holds by (96) and (103) for small enough ε.

Finally, given (104) - (106), Lemma 5 implies that there exists an incentive compatible mechanism

Ω̃ such that EUDM (Ω̃) > EUDM (Ω̂)− 4(1+zmax−z′
Pr(Θ0

q)
Pr(Θu))2, then by (107), for small enough ε,

EUDM (Ω̃)− EUDM (Ω)
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>Pr(Θu)[
1

4
ε

2
3 − Pr(Θ0

q)(
1 + zmax − z′

Pr(Θ0
q)

)2Pr(Θu)− 4(
1 + zmax − z′

Pr(Θ0
q)

)2Pr(Θu)]

≥Pr(Θu)[
1

4
ε

2
3 − Pr(Θ0

q)(
1 + zmax − z′

Pr(Θ0
q)

)2ε− 4(
1 + zmax − z′

Pr(Θ0
q)

)2ε] > 0

where the second inequality holds because Pr(Θ0
q) = Pr(M ′) ≤ ε , but it contradicts that Ω is an

optimal mechanism. Therefore, we conclude that θt) ≥ θ0
in an optimal mechanism. �

Lemma 10 In an optimal mechanism Ω, wq(m) < 0.5 almost everywhere for m ∈M+
q .

Proof of Lemma 10: Suppose Contrary to the claim, there exist a positive measure set of messages

M ⊆ M+
q such that for any m ∈ M , wq(m) = 0.5, i.e. X(m,u) = X(m,t)+X(m,l)

2 , then Vq(m) =

(X(m, t)−X(m,u))(X(m,u)−X(m, l)) = c implies that X(m, t)−X(m,u) = X(m,u)−X(m, l) =
√
c.

By Lemma 3, X(m,u) > X(m0
q , u) ≡ µ, so X(m, l) > µ −

√
c. Therefore, there exists δ > 0 and a

positive measure set of message M ′ ⊆M+
q such that for any m ∈M ′,

(µ−X(m, l))2 < c− δ (108)

Now we consider two cases.

Case 1: there is a message m′ ∈M ′ such that Pr(m′) ≡ a > 0.

Let Θl = Θl
q(m

′), Θt = Θt
q(m

′) and Θu = Θl ∪ Θt be the set of truth-tellers, liars and senders of m′

;Eu = E[Θu], Et = E[Θt], El = E[Θl], be their corresponding expected values. Then we have

Pr(Θl) = Pr(Θt) =
a

2
(109)

Et − Eu = Eu − El =
√
c (110)

(µ− El)2 < c− δ (111)

For ε ∈ (0, 1] and s ∈ {t, l}, let Θs
ε = Θs/Θs(1 − ε) the outer ring mean-preserving division of Θs so

that E[Θs
ε ] = Es, Pr(Θs

ε) = a
2ε. Since Θs

ε and Θs/Θs
ε induce the same actions X(m′, s) with the same

weight of truthful and lying types, we can without loss separate them into two messages mε and m1−ε.

Now for z ∈ [0, 1], let θlε(z) = inf θ : Pr(Θl
ε ∩ [θ, 1]) = zPr(Θl) be the 1− z percentile type in Θl

ε. Let

Elε(z) = E[Θl
ε ∩ [0, θlε(z))] be is the expected value for the bottom 1 − z percentile types in Θl

ε. Note

that Elε(z) =
∫ z
0 θ

l
ε(z
′)dz′

1−z , Elε(0) = El and dElε(z)
dz = Elε(z)− θlε(z). Now define ẑε that solves

1− z
(2− z)2

(Et − Elε(z))2 = c (112)

z ∈ (0, 1) (113)
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To show that there exists such solution, When z = 1, 1−z
(2−z)2 (Et − Elε(z))

2 = 0 < c; when z = 0,

1−z
(2−z)2 (Et − Elε(z))2 = 1

4(Et − Elε(0))2 = 1
4(Et − El)2 = c, where the last equality holds because of

(110). Since

lim
z→0+

d[
1− z

(2− z)2
(Et − Elε(z))2]/dz = −1

4
2(Et − El) lim

z→0+

dElε(z)

dz

=
√
c(θlε(0)− El)

=
√
c(sup Θl − El) > 0, (114)

such ẑε ∈ (0, 1) exists for any ε ∈ (0, 1]. Now Define a modified inspected liar set Θ̂l = Θl
ε ∩ [0, θlε(ẑε))

so that

Pr(Θ̂l) =
a

2
(1− ẑε)ε (115)

E[Θ̂l] = Elε(ẑε) (116)

Pr(Θ̂l)Pr(Θt
ε)

(Pr(Θ̂l) + Pr(Θt
ε))

2
(Et − E[Θ̂l])2 =

1− ẑε
(2− ẑε)2

(Et − Elε(ẑε))2 = c (117)

Define the modified uninspected set Θ0
q̂ = Θ0

q ∪ (Θl
ε ∩ [θlε(ẑε), 1]), so that

Pr(Θ0
q̂) = Pr(Θ0

q) +
a

2
ẑεε (118)

E[Θ0
q̂ ] =

Pr(Θ0
q)µ+ a

2 ẑεεE
l

Pr(Θ0
q) + a

2 ẑεε
(119)

where E
l ≡ E[Θl

ε ∩ [θlε(ẑε), 1]] > El is the expected value for the top z percentile types in Θl
ε.

Now define the modified message and action rules q̂, X̂ where other things remain unchanged,

except the messages mε is modified to message m̂ = Θt with the set of truthful senders Θt
q̂(m̂) = Θt,

and the set of lying senders Θl
q̂(m̂) = Θ̂l; The uninspected message is modified to m0

q̂ = Θ0
q̂ with the

set of senders identical to the statement.

The sequentially rational actions for the modified message m̂ are

X̂(m̂, t) = E[Θt] = Et

X̂(m̂, l) = E[Θ̂l] = Elε(ẑε)

X̂(m̂, u) = E[Θ̂t ∪Θl)] = x∗u(Et, Elε(ẑε)) > x∗u(Et, El) = X(m′, u) (120)

where the second equality of (120) holds by (117); the inequality holds by Lemma 6 and Elε(ẑε) < El;

the last equality holds by optimality of Ω.
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The sequentially rational action for the modified uninspected message m0
q̂ is

X̂(m0
q̂ , u) = E[Θ0

q̂ ] = X(m0
q , u)− aẑε

2Pr(Θ0
q)

(X̂(m0
q̂ , u)− El)ε (121)

Since Θ0
q̂ ∪ Θ̂l = Θ0

q ∪Θl
ε, we have Pr(Θ0

q̂)− Pr(Θ0
q) = Pr(Θl

ε)− Pr(Θ̂l) = a
2 ẑεε and

Pr(Θ0
q)(µ− E[Θ0

q̂ ]) + Pr(Θ̂l)(El − Elε(ẑε))−
a

2
ẑεε(E[Θ0

q̂ ]− El) = 0 (122)

Since the original mechanism is optimal, wq(m) = w−(X(m, t)−X(m, l)) hold almost everywhere for

unmodified message m ∈M+
q /mε. For the modified message, (117) implies wq̂(m̂) = w−(Et−El(ẑε)) =

w−(X̂(m̂, t)− X̂(m̂, l)), so we have

wq̂(m) = w−(X̂(m, t)− X̂(m, l)) (123)

hold almost everywhere at M+
q̂ .

To compare DM’s payoffs, since Vq(m) = Vq̂(m) = c, by Lemma 4, EUDM (Ω) = EU IDM (Ω) and

EUDM (Ω̂) = EU IDM (Ω̂), so

EUDM (Ω̂)− EUDM (Ω)

=Pr(Θ0
q̂)E[Θ0

q̂ ]
2 + Pr(Θ̂l)(Elε(ẑε)

2 − c)− Pr(Θ0
q)µ

2 − Pr(Θu)((El)2 − c)

=− Pr(Θ0
q)(µ

2 − E[Θ0
q̂ ]

2)− Pr(Θ̂l)((El)2 − Elε(ẑε)2) +
a

2
ẑεε(E[Θ0

q̂ ]
2 − (El)2) +

a

2
ẑεεc

=− Pr(Θ0
q)(µ

2 − E[Θ0
q̂ ]

2 − 2E[Θ0
q̂ ](µ− E[Θ0

q̂ ]))− Pr(Θ̂l)((El)2 − Elε(ẑε)2 − 2E[Θ0
q̂ ]((E

l − Elε(ẑε)))

+
a

2
ẑεε(E[Θ0

q̂ ]
2 − (El)2 − 2E[Θ0

q̂ ](E[Θ0
q̂ ]− El)) +

a

2
ẑεεc

=− Pr(Θ0
q)(µ− E[Θ0

q̂ ])
2 − Pr(Θ̂l)((El − Elε(ẑε))(El + Elε(ẑε)− 2E[Θ0

q̂ ]))

+
a

2
ẑεε(c− (E[Θ0

q̂ ]− El)2)

>− Pr(Θ0
q)(

aẑε
2Pr(Θ0

q)
(X̂(m0

q̂ , u)− El)ε)2ε2 +
a

2
ẑεεδ (124)

where the third equality holds by (122); the inequality holds because of (111), (121) and E[Θ0
q̂ ] ≈ µ >

El > Elε(ẑε) for small enough ε.

Case 2: Pr(m) = 0 for all m ∈M ′:

If almost every m,m′ ∈M ′ induces the same actions X(m, s) = X(m′, s) = X
s
, then it is without

loss to pool them into a same message with positive measure, and case 1 applies. Now if there exist

δ′ > 0 and two positive measure subsets of messages M ′1 ⊆ M ′ and M ′2 ⊆ M ′ such that for any

(m1,m2) ∈M ′1 ×M ′2 and s ∈ t, l, u,

X(m1, s)−X(m2, s) > δ′ (125)
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then for any ε > 0 there exist two positive measure subsets M ′′1 ⊆M ′1 and M ′′2 ⊆M ′2 such that for any

i = 1, 2, m,m′ ∈M ′′i and s ∈ t, l, u,

|X(m, s)−X(m′, s)| < ε (126)

and Pr(M ′′1 ) = zPr(M ′′2 ) ≤ ε for any z ∈ (0,∞). For i = 1, 2 and s ∈ t, l, u, let Θs
i = Θs

q(M
′′
i ) be

the aggregate sets of truthful senders, lying senders and senders of M ′′i , and Esi = E[Θs
i ] be their

corresponding expected value. Since wq(m) = 0.5 for any m ∈Mi, we have

Pr(Θl
i) = Pr(Θt

i) (127)

Eti − Eui = Eui − Eli =
√
c (128)

(µ− Eli)2 < c− δ (129)

and thus

Et1 − Et2 = El1 − El2 > δ′ (130)

For z ∈ (0,∞), let Θ̂t(z) = Θt
1 ∪ Θt

2 be the aggregate set of truthful type, and Et(z) = E[Θ̂t(z)] =

Θt
2 + z

1+z (Θt
1 −Θt

2). Define ẑ that solves

1 + z

(2 + z)2
(Et(z)− El2)2 = c (131)

z ∈ (0,∞) (132)

To show that there exists such solution, When z → ∞, 1+z
(2+z)2 (Et(z) − El2)2 → 0 < c; when z = 0,

1+z
(2+z)2 (Et(z)− El2)2 = 1

4(Et2 − El2)2 = 1
4(Et − El)2 = c.Since

lim
z→0+

d[
1 + z

(2 + z)2
(Et(z)− El2)2]/dz = −1

4
2(Et2 − El2) lim

z→0+

dEt(z)

dz

=
√
c(Et1 − Et2)

>
√
cδ′ > 0, (133)

such ẑε ∈ (0, 1) exists. Now take a set of messages M ′′1 such that Pr(M ′′1 ) = Θ̂tPr(M ′′2 ) ≤ ε. Denote

b = Pr(M ′′2 ) and let Θ̂t(ẑ) be the modified inspected truth-teller set so that

Pr(Θ̂t) = (1 + ẑ)
b

2
(134)

E[Θ̂t] = Et(ẑ) = Θt
2 +

ẑ

1 + ẑ
(Θt

1 −Θt
2) (135)
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Pr(Θl
2)Pr(Θ̂t)

(Pr(Θl
2) + Pr(Θ̂t)2

(E[Θ̂t]− El2)2 =
1 + ẑ

(2 + ẑ)2
(Et(z)− El2)2 = c (136)

Define the modified uninspected set Θ0
q̂ = Θ0

q ∪Θl
1, so that

Pr(Θ0
q̂) = Pr(Θ0

q) + ẑ
P r(M ′′2 )

2
(137)

E[Θ0
q̂ ] =

Pr(Θ0
q)µ+ ẑ

Pr(M ′′2 )
2 El1

Pr(Θ0
q) + ẑ b2

(138)

Now define the modified message and action rules q̂, X̂ where other things remain unchanged,

except the set of messages M ′′1 ∪M ′′2 is off-path; an inspected message m̂ = Θ̂t(ẑ) is added with the

set of truthful senders Θt
q̂(m̂) = Θ̂t(ẑ), and the set of lying senders Θl

q̂(m̂) = Θl
2; The uninspected

message is modified to m0
q̂ = Θ0

q̂ with the set of senders identical to the statement.

The sequentially rational actions for the modified message m̂ are

X̂(m̂, t) = E[Θ̂t(ẑ)] = Et(ẑ)

X̂(m̂, l) = E[Θ̂l] = El2

X̂(m̂, u) = E[Θ̂t ∪Θl)] = x∗u(Et(z), El2 > x∗u(Et2, E
l
2) = Eu2 (139)

where the second equality of (120) holds by (136); the inequality holds by Lemma 6 and Et(ẑ) > Et2;

the last equality holds by optimality of Ω.

The sequentially rational action for the modified uninspected message m0
q̂ is

X̂(m0
q̂ , u) = E[Θ0

q̂ ] = X(m0
q , u)− ẑb

2Pr(Θ0
q)

(X̂(m0
q̂ , u)− El1) (140)

Since Θ0
q̂ = Θ0

q∪Θl
1, Θ̂t(ẑ) = Θt

1∪Θt
2 and Pr(Θ0

q̂)−Pr(Θ0
q) = Pr(Θ̂t)−Pr(Θt

2) = Pr(Θt
1) = Pr(Θl

1) =

ẑ
2b,

Pr(Θ0
q)(µ− E[Θ0

q̂ ])−
ẑ

2
b(E[Θ0

q̂ ]− El1) = 0 (141)∫
m∈M ′′i

(Esi −X(m, s))

∫
Θsq(m)

dF (θ)dm = 0 for i = 1, 2; s = t, l (142)

(1 + ẑ)Et(ẑ)− Et2 − ẑEt1 = 0 (143)

Since the original mechanism is optimal, wq(m) = w−(X(m, t)−X(m, l)) hold almost everywhere for

unmodified message m ∈M+
q /mε. For the modified message, (136) implies wq̂(m̂) = w−(Et−El(ẑε)) =

w−(X̂(m̂, t)− X̂(m̂, l)), so

wq̂(m) = w−(X̂(m, t)− X̂(m, l)) (144)
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hold almost everywhere at M+
q̂ .

To compare DM’s payoffs, since Vq(m) = Vq̂(m) = c, by Lemma 4, EUDM (Ω) = EU IDM (Ω) and

EUDM (Ω̂) = EU IDM (Ω̂), so

EUDM (Ω̂)− EUDM (Ω)

=Pr(Θ0
q̂)E[Θ0

q̂ ]
2 + Pr(Θ̂t)(Et(ẑ)2 − c) + Pr(Θl

2)((El2)2 − c)

− Pr(Θ0
q)µ

2 −
∑
i=1,2

∑
s=t,l

∫
M ′′i

(X(m, s)2 − c)
∫

Θsq(m)
dF (θ)dm

=− Pr(Θ0
q)(µ

2 − E[Θ0
q̂ ]

2)− b

2
ẑ((El1)2 − E[Θ0

q̂ ]
2)− b

2
((1 + ẑ)Et(ẑ)2 − (Et2)2 − ẑ(Et1)2)

−
∑
i=1,2

∑
s=t,l

∫
M ′′i

(X(m, s)2 − (Esi )
2)

∫
Θsq(m)

dF (θ)dm+
b

2
ẑc

=− Pr(Θ0
q)(µ− E[Θ0

q̂ ])
2 − b

2
ẑ(El1 − E[Θ0

q̂ ])
2 − b

2
(

ẑ

1 + ẑ
(Et1 − Et2)2)

−
∑
i=1,2

∑
s=t,l

∫
M ′′i

(X(m, s)− Esi )2

∫
Θsq(m)

dF (θ)dm+
b

2
ẑc

≥− Pr(Θ0
q)(

ẑb

2Pr(Θ0
q)

(X̂(m0
q̂ , u)− El1))2 − b(1 + ẑ)

1

4
ε2 +

b

2
ẑ[c− 1

1 + ẑ
(Et1 − Et2)2 − (E[Θ0

q̂ ]− El1)2]

>− Pr(Θ0
q)(

ẑ

2Pr(Θ0
q)

(X̂(m0
q̂ , u)− El1))2b2 − b(1 + ẑ)

1

4
ε2 +

b

2
ẑ[c− (µ− El2)2]

>− Pr(Θ0
q)(

ẑ

2Pr(Θ0
q)

(X̂(m0
q̂ , u)− El1))2b2 − b(1 + ẑ)

1

4
ε2 +

b

2
ẑδ (145)

where the third equality holds by (141)-(143); the first inequality holds because of (140), (126) and

Popoviciu’s inequality; the second inequality holds for small ε because Et1 − Et2 = El1 − El2 and µ ≈

E[Θ0
q̂ ] > El1 > El2; the last inequality holds by (129).

Finally for Case j = 1, 2, (121) and (140) imply that X(m0
q , u)− X̂(m0

q̂ , u) = Kj(ε) where

K1(ε) =
aẑε

2Pr(Θ0
q)

(X̂(m0
q̂ , u)− El)ε

K2(ε) =
ẑ

2Pr(Θ0
q)

(X̂(m0
q̂ , u)− El1)b ≤ ẑ

2Pr(Θ0
q)

(X̂(m0
q̂ , u)− El1)ε

so Lemma 5 implies that there exists an incentive compatible mechanism Ω̃ such that EUDM (Ω̃) >

EUDM (Ω̂)−4Kj(ε)
2, then by (124) and (145) EUDM (Ω̃)−EUDM (Ω) > a

2 ẑεεδ−[4+Pr(Θ0
q)](

aẑε
2Pr(Θ0

q)
(X̂(m0

q̂ , u)−

E
l
)ε)2 for case 1 and EUDM (Ω̃)−EUDM (Ω) > b

2 ẑδ− b(1 + ẑ)1
4

1
4ε

2− [4 +Pr(Θ0
q)][(

ẑ
2Pr(Θ0

q)
(X̂(m0

q̂ , u)−

El1))]2b2 for case 2, where b ≤ ε goes to 0 as ε → 0, so in both cases EUDM (Ω̃) − EUDM (Ω) > 0

for small enough ε, but it contradicts that Ω is an optimal mechanism. Therefore, we conclude that

wq(m) < 0.5 almost everywhere for m ∈M+
q in an optimal mechanism. �
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Lemma 11 Suppose for an optimal mechanism Ω, Pr(Θ0
q) > 0 and µ−θl > θt−µ, then θt ∈ (µ, µ+

√
c)

and for almost every θ ∈ (θt, µ +
√
c) ∩ Θt

q(M+
q ), θ is essentially revealed upon inspection in Ω, and

Θt
q(mq(θ)) = {θ}.

Proof of Lemma 11: First We claim that θt = θ
0
> µ, where the inequality holds by definition and

Pr(Θ0
q) > 0. Suppose θt 6= θ

0
, then by Lemma 9 θt > θ

0
, and since Θt

q(M+
q )∪Θt

q(M+
q )∪Θ0

q = [0, 1], we

have θt = θ
l
, but that contradicts µ−θl > θt−µ > 0. Now θt = θ

0
and Θt

q(M+
q )∪Θt

q(M+
q )∪Θ0

q = [0, 1]

imply θ
l ≥ θ0. Then θt = θ

0
, θ

l ≥ θ0, µ− θl > θt − µ > 0 and Lemma 8 imply that θt − µ <
√
c.

Now we show that for almost every θ ∈ (θt, µ +
√
c) ∩ Θt

q(M+
q ), θ is essentially revealed upon

inspection in Ω. Suppose on the contrary, there exist a positive measure set Θt ⊆ (θt, µ+
√
c)∩Θt

q(M+
q )

such that for any θ ∈ Θt, x
d
Ω(θ) = X(mq(θ), t) 6= θ. Let Θ′t = {θ ∈ Θt : X(mq(θ), t) < θ}. Since X(.)

satisfies (5), Θ′t must have positive measure. For any m ∈ mq(Θ
′
t), Lemma 3 implies that X(m,u) > µ,

and Lemma 10 implies wq(m) < 0.5, so there exist δ > 0 and a positive measure subset Θ′′t ⊆ Θ′t such

that for any θ ∈ Θ′′t and m ∈ mq(Θ
′′
t ),

(θ − µ)2 < c− δ (146)

θ < xdΩ(θ)− δ (147)

X(m,u) > µ+ δ (148)

wq(m) < 0.5− δ (149)

Denote a =
Pr(Θ′′t )

Pr(Θtq(mq(Θ
′′
t )))

> 0, and let Ma
t = ∩M ⊆ mq(Θ

′′
t ) :

Pr(Θ′′t ∩Θtq(M))

Pr(Θtq(M)) ≥ a be the subset

containing every message in mq(Θ
′′
t ) where proportion of truthful types within Θ′′t is no less than

a. Since Pr(Ma
t ) > 0, for any ε > 0 there is positive measure subset M ′ ⊆ Ma

t such that for any

m,m′ ∈M ′ and s ∈ {t, l, u},

|X(m, s)−X(m′, s)| < ε (150)

and Pr(M ′) ≤ ε Denote b = Pr(M ′) ≡ Pr(Θu
q (M ′)). Let Θ′ = Θt

q(M
′) ∩ Θ′′t be the set of truthful

types in M ′ that satisfies (146) and(147). Since M ′ ⊆Ma
t , we have

Pr(Θ′) ≥ aPr(Θt
q(M

′)) (151)

Let Θl = Θl
q(M

′), Θt = Θt
q(M

′) and Θu = Θl∪Θt be the aggregate set of truth-tellers, liars and senders

of M ′; Θex = Θt
q(M

′)/Θ′ be the set of truth-tellers excluding those in Θ′; Eu = E[Θu], Et = E[Θt],
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El = E[Θl], E′ = E[Θ′] and Eex = E[Θex] be their corresponding expected values, so that

Et =
z′E′ + zexEex

z′ + zex
(152)

and zt = Pr(Θt)
b , zl = Pr(Θl)

b = 1 − zt, z′ = Pr(Θ′)
b and zex = Pr(Θex)

b be their corresponding ratios of

measure to set of senders Θu. Since Θ′ ⊆ Θ′′t and M ′ ∈Ma
t ,

(E′ − µ)2 < c− δ (153)

E′ + δ < Et < Eex (154)

z′ ≥ azt (155)

Since the original mechanism is optimal, we have (X(m, t) − X(m,u))(X(m,u) − X(m, l)) = c and

wq(m) = w−(X(m, t)−X(m, l)) ≤ 0.5 almost everywhere at M ′, so |Es−X(m, s)| < ε for any m ∈M ′

and s = t, l, u and (149) imply

|(1− zt)zt(Et − El)2 − c| ≡ |(Et − Eu)(Eu − El)− c| < 4ε2 (156)

zt > 0.5 + δ (157)

Therefore zl = 1− zt ∈ (1
2 −

√
1
4 −

c+4ε2

(Et−El)2 ,
1
2 −

√
1
4 −

c−4ε2

(Et−El)2 ), so

zl

zt
=

w−(Et − El)
1− w−(Et − El)

+ k1(ε)ε2 = h(Et − El) + k1(ε)ε2 (158)

where k1(ε) is a bounded function.

For any r ∈ [0, 1], let Et(r) = ztEt−rz′E′−εzexEex
zt−rz′−εzex be the expected value of the set (Θt

q(M
′)/(Θ′r)∪Θex,ε),

where Θ′r is a set with expected value E′ and measure rPr(Theta′), and Θex,ε is a set with expected

value Eex and measure εPr(Θex). Define r̂ ∈ (0, 1) that solves

h(Eex − El)εzex + h(Et(r)− El)(zt − rz′ − εzex) = zl (159)

To show that such solution exists for small enough ε, Et(1) = Eex > Et, and h(Eex−El)εzex+h(Et(r)−

El)(zt − rz′ − εzex) = h(Eex − El)(zt − z′) < h(Et − El)zt → zl, where the first inequality holds as

h(.) is a decreasing function, and (158) implies limε→0 h(Et − El)zt − zl = 0, so when r = 1, LHS of

(159) is smaller than zl for small ε; On the other end, Et(0) = Et− εzex
zt−εzex (Eex−Et) < Et < Eex and

Et = zex
zt εE

ex + (1 − zex
zt ε)E

t(0), so by second order taylor expansion, h(Et − El) = h(Et(0) − El) +

h′(Et(0)− El) zexzt (Eex − Et(0))ε+ h′′(Ẽ − El)( zexzt (Eex − Et(0))ε)2, where Ẽ ∈ [Et(0), Eex]. Then

(1− zex
zt
ε)h(Et(0)− El) +

zex
zt
εh(Eex − El)− h(Et − El)

54



=h(Et(0)− El) +
zex
zt
ε[h(Eex − El)− h(Et(0)− El)]− h(Et − El)

=
zex
zt
ε[h(Eex − El)− h(Et(0)− El)− (Eex − Et(0))h′(Et(0)− El)]

− h′′(Ẽ − El)(zex
zt

(Eex − Et(0))ε)2

≡k2(ε)ε (160)

where limε→0 k2(ε) > 0 because h(.) is strictly convex and Eex > Et ≈ Et(0), so h(Eex−El)−h(Et(0)−

El) − (Eex − Et(0))h′(Et(0) − El) is bound away from 0. Therefore, h(Eex − El)εzex + h(Et(r) −

El)(zt − rz′ − εzex) = zt[(1 − zex
zt ε)h(Et(0) − El) + zex

zt εh(Eex − El)] = zt[h(Et − El) + k2(ε)ε] =

zl + k1(ε)ε2 + ztk2(ε)ε > zl for small enough ε, so when r = 0, LHS of (159) is larger than zl for

small ε, thus there exists r̂ ∈ (0, 1) such that (159) is satisfied. Furthermore, we have limε→0 r̂ = 0,

for otherwise limε→0E
t(r̂) > Et, and limε→0 h(Eex − El)εzex + h(Et(r̂) − El)(zt − r̂z′ − εzex) =

limε→0 h(Et(r̂)− El)(zt − r̂z′) < limε→0 h(Et − El)zt = zl, contradicting (159).

Now let Θex,ε = Θex(ε) the modified upper set of inspected truth-teller, where Θex(ε) is a mean-

preserving division of Θex so that

Pr(Θex,ε) = εPr(Θex) = εzexb (161)

E[Θex,ε] = Eex (162)

Let Θ0
q̂ = Θ0

q ∪Θ′(r̂) be the modified uninspected set, where Θ′(r̂) is a mean-preserving division of Θ′

so that

Pr(Θ′(r̂)) = r̂P r(Θ′) = r̂z′b (163)

E[Θ′(r̂)] = E′ (164)

and thus

Pr(Θ0
q̂) = Pr(Θ0

q) + r̂z′b (165)

E[Θ0
q̂ ] =

Pr(Θ0
q)µ+ r̂z′bE′

Pr(Θ0
q) + r̂z′b

(166)

Let Θ̂ = (Θ′/Θ′(r̂)) ∪ (Θex/Θex,ε) be the modified lower set of inspected truth-teller, so that

Pr(Θ̂) = (1− ε)Pr(Θex) + (1− r̂)Pr(Θ′) = [zt − εzex − r̂z′)]b (167)

E[Θ̂] =
ztEt − rz′E′ − εzexEex

zt − rz′ − εzex
= Et(r) (168)
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Let zl = h(Eex − El)εzex be the required share of liars for the modified upper set of inspected truth-

teller, and zl = h(Et(r̂)−El)(zt − r̂z′ − εzex) be the the required share of liars for the modified lower

set of inspected truth-teller. (159) implies that zl + zl = zl. Let Θ
l

= Θl( z
l

zl
) and Θl = Θl/Θ

l
be

the mean-preserving divisions of Θl so that E[Θ
l
] = E[Θl] = El, Pr(Θ

l
) = h(Eex − El)εzexb and

Pr(Θl) = h(Et(r̂)− El)(zt − r̂z′ − εzex)b. By the definition of h(.),

Pr(Θ
l
)Pr(Θex,ε)

(Pr(Θ
l
) + Pr(Θex,ε))2

(Eex − El)2 = c (169)

Pr(Θl)Pr(Θ̂)

(Pr(Θl) + Pr(Θ̂))2
(Et(r̂)− El)2 = c (170)

Now define the modified message and action rules q̂, X̂ where other things remain unchanged,

except the set of messages M ′ is off-path; an upper inspected message mex = Θex,ε is added with the

set of truthful senders Θt
q̂(mex) = Θex,ε, and the set of lying senders Θl

q̂(mex) = Θ
l
; an lower inspected

message m̂ = Θ̂ is added with the set of truthful senders Θt
q̂(m̂) = Θ̂, and the set of lying senders

Θl
q̂(m̂) = Θl; The uninspected message is modified to m0

q̂ = Θ0
q̂ with the set of senders identical to the

statement.

The sequentially rational actions for the upper modified message mex are

X̂(mex, t) = Eex

X̂(mex, l) = El

X̂(mex, u) = x∗u(Eex, E
l) > x∗u(Et, El) > µ (171)

The sequentially rational actions for the lower modified message m̂ are

X̂(m̂, t) = Et(r̂)

X̂(m̂, l) = El

X̂(m̂, u) = x∗u(Et(r̂), El2) ≈ x∗u(Et, El) > µ (172)

where the approximation of (172) holds as ε→ 0, and the inequality holds by (148). The sequentially

rational action for the modified uninspected message m0
q̂ is

X̂(m0
q̂ , u) = X(m0

q , u) +
r̂z′b

Pr(Θ0
q) + r̂z′b

(E′ −X(m0
q , u)) (173)

Since the original mechanism is optimal, wq(m) = w−(X(m, t)−X(m, l)) hold almost everywhere for

unmodified message m ∈ M+
q /mε. For the modified message, (169) and (170) imply wq̂(mex) ==
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w−(Eex − El) and wq̂(m̂) = w−(Et(r̂)− El), so

wq̂(m) = w−(X̂(m, t)− X̂(m, l)) (174)

hold almost everywhere at M+
q̂ .

To compare DM’s payoffs, since Vq(m) = Vq̂(m) = c, by Lemma 4, EUDM (Ω) = EU IDM (Ω) and

EUDM (Ω̂) = EU IDM (Ω̂), so

EUDM (Ω̂)− EUDM (Ω)

=(Pr(Θ0
q) + r̂z′b)E[Θ0

q̂ ]
2 + εzexb(E

2
ex − c) + (zt − εzex − r̂z′)b(Et(r̂)2 − c) + zlb((El)2 − c)

− Pr(Θ0
q)µ

2 −
∑
s=t,l

∫
M ′

(X(m, s)2 − c)
∫

Θsq(m)
dF (θ)dm

=− [Pr(Θ0
q)µ

2 + r̂z′b(E′)2 − (Pr(Θ0
q) + r̂z′b)E[Θ0

q̂ ]
2] + r̂z′bc

+ b[εzexE
2
ex + r̂z′(E′)2 + (zt − εzex − r̂z′)Et(r̂)2 − zt(Et)2]

−
∑
s=t,l

∫
M ′

(X(m, s)2 − (Es)2)

∫
Θsq(m)

dF (θ)dm

=− Pr(Θ0
q)(E[Θ0

q̂ ]− µ)2 + r̂z′b[c− (E′ − E[Θ0
q̂ ])

2]

+ b[εzex(Eex − Et)2 + r̂z′(Et − E′)2 + (zt − εzex − r̂z′)(Et − Et(r̂))2]

−
∑
s=t,l

∫
M ′

(X(m, s)− (Es))2

∫
Θsq(m)

dF (θ)dm

>− Pr(Θ0
q)(

r̂z′b

Pr(Θ0
q) + r̂z′b

(E′ −X(m0
q , u)))2 + r̂z′bδ +

1

4zex
a2δ2bε− 1

4
bε2 (175)

where the third equality holds by sequential rational actions ; the inequality holds because of (173),

(E′−E[Θ0
q̂ ])

2 < (E′−µ)2 < c−δ, bεzex(Eex−Et)2 = bεzex[ z
′

zex
(Et−E′)]2 > bεzex[az

t

zex
δ]2 > bεzex[0.5a

zex
δ]2,

(126) and Popoviciu’s inequality.

(173) implies that X̂(m0
q̂ , u)−X(m0

q , u) = z′

Pr(Θ0
q)+r̂z

′b(E
′−X(m0

q , u))r̂b, so Lemma 5 implies that there

exists an incentive compatible mechanism Ω̃ such that EUDM (Ω̃) > EUDM (Ω̂) − 4( z′

Pr(Θ0
q)+r̂z

′b(E
′ −

X(m0
q , u))r̂b)2, then by (175) EUDM (Ω̃)−EUDM (Ω) > r̂z′bδ+ 1

4zex
a2δ2bε−1

4bε
2−[4+Pr(Θ0

q)](
z′

Pr(Θ0
q)+r̂z

′b(E
′−

X(m0
q , u))r̂b)2, where b ≤ ε goes to 0 as ε → 0, so EUDM (Ω̃) − EUDM (Ω) > 0 for small enough ε,

but it contradicts that Ω is an optimal mechanism. Therefore, we have shown that for almost every

θ ∈ (θt, µ+
√
c) ∩Θt

q(M+
q ), θ is essentially revealed upon inspection in an optimal mechanism Ω.

Finally, suppose there is a positive measure set Θt ∈ (θt, µ +
√
c) ∩ Θt

q(M+
q ), such that for θ ∈

Θt, x
d
Ω(θ) = θ but Θt

q(mq(θ)) 6= {θ}, then there is a positive measure set of truthful types Θ′ =
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Θt
q(mq(Θt))/Θt who pool with Θt but not in Θ′. Then since xdΩ(θ) = θ for θ ∈ Θt, sequential

rationality of X means there exists positive measure set Θ′− = {θ ∈ Θ′ : θ < Xd
Ω(θ)}, but it means

that for θ ∈ Θ′−, θ < Xd
Ω(θ) < µ +

√
c is not essentially revealed upon inspection, contradicts to the

first statement.

�

Lemma 12 Suppose there is a mechanism Ω such that Pr(Θ0
q) > 0, θt ∈ (µ, µ+

√
c), X is sequentially

rational given q, and there is a message m̂ ∈ M+
q such that conditions (a) and (b) of Lemma 3 and

wq(m) = w−(X(m, t)−X(m, l)) are satisfied almost everywhere for m ∈M+
q /m̂ and Properties stated

in Lemma 11 are satisfied for Θt
q(M+

q m̂), except that Pr(m̂) > 0, X(m̂, t) > infm∈M+q X(m, t),

X∗u(X(m̂, t), X(m̂, l)) > µ and hq(m̂) ≡ Pr(Θlq(m̂))

Pr(Θtq(m̂)) < h(X(m̂, t)−X(m̂, l)).

Let b̂ = (1 − hq(m̂)
h(X(m̂,t)−X(m̂,l)))Pr(Θt

q(m̂)). Then for any small enough b̂ there exists an incentive

compatible mechanism Ω̂ such that EU IDM (Ω̂) > EU IDM (Ω) + k(b̂)b̂, where limb̂→0 k(b̂) > 0 .

Proof of Lemma 12: Let zt =
Pr(Θtq(m̂))

Pr(m̂) and zl =
Pr(Θlq(m̂))

Pr(m̂) , be the share of truthful types and lying

types in m̂, ztr = zl

h(X(m̂,t)−X(m̂,l)) and zte = zt − ztr be the required share of truthful types and excess

share of truthful types. We have

zte = zt(1− hq(m̂)

h(X(m̂, t)−X(m̂, l))
) > 0 (176)

Let Θl = Θl
q(m̂) be the set of liars in m̂, Θt

r = Θt
q(m̂)( z

t
r
zt ) and Θt

e = Θt
q(m̂)/Θt

q(m̂)( z
t
r
zt ) be the

mean-preserving divisions of Θt
q(m̂) so that

E[Θt
r] = E[Θt

e] = E[Θt
q(m̂)] = X(m̂, t) (177)

Pr(Θt
r) =

ztr
zt
Pr(Θt

q(m̂)) =
Pr(Θl

q(m̂))

h(X(m̂, t)−X(m̂, l))
(178)

Pr(Θt
e) =

zte
zt
Pr(Θt

q(m̂)) = (1− hq(m̂)

h(X(m̂, t)−X(m̂, l))
)Pr(Θt

q(m̂)) = b̂ (179)

Let Θt = {θ ∈ Θt
q(M+

q /m̂) : θ < X(m̂, t)}. Θt has positive measure becauseX(m̂, t) > infm∈M+q X(m, t).

Then by Lemma 11, there exists δ > 0 and a positive measure subset Θ′t ⊆ Θt such that for any θ ∈ Θ′t

,

(θ − µ)2 < c− δ (180)

xdΩ(θ) = θ (181)

Θt
q(mq(θ)) = {θ} (182)
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Let Mt = mq(Θ
′
t) be the set of messages sent by truthful types Θ′t. (182) and sequential rationality

of X imply that for any m ∈ Mt, Θt
q(m) = {X(m, t)}. By definition of Mt, for any m ∈ Mt,

X(m̂, t) > X(m, t) , and since h(X(m, t)−X(m, l)) is well-defined in Ω, h(X(m̂, t)−X(m, l)) is also

well-defined with h(X(m̂, t) −X(m, l)) < h(X(m, t) −X(m, l)). Since Pr(Mt) > 0, for small enough

b̂, we have
∫
m∈Mt

1
h(X(m̂,t)−X(m,l))

∫
Θlq(m) dF (θ)dm ≥ b̂, and because Mt is a collection of zero measure

messages, so there exists M ′t ⊆Mt such that∫
m∈M ′t

1

h(X(m̂, t)−X(m, l))

∫
Θlq(m)

dF (θ)dm = b̂ (183)

Assign an arbitrary strict ranking r : M ′t → R to the message set M ′t . Then for any m ∈M ′t , let

z(m) =
1

b̂

∫
m′∈M ′t:r(m′)≤r(m)

1

h(X(m̂, t)−X(m′, l))

∫
Θtq(m

′)
dF (θ)dm′ (184)

be the cumulative required share of truthful types in Θt
e to pair with the liars in M ′t .

Define an modified messaging and action rules q̂, X̂ where other things remain unchanged, ex-

cept the message (̂m) is modified to T (m̂, the set of truthful senders Θt
q̂(T (m̂)) = Θt

r and the set

of lying senders Θl
q̂(T (m̂)) = Θl; for each m ∈ M ′t , m is modified to T (m) with the set of truth-

ful senders Θt
q̂(T (m)) = Θt

e(z(m)) int(Θt
e(z(m))) and the set of lying senders Θl

q̂(T (m)) = Θl
q(m),

where Θt
e(z(m)) int(Θt

e(z(m))) is the boundary set of a mean preserving division of Θt
e(z(m)) so

that E[Θt
q̂(T (m))] = E[Θt

e] = X(m̂, t) and the set has measure 1
h(X(m̂,t)−X(m,l))

∫
Θtq(m) dF (θ); The

uninspected message is modified to m0
q̂ with the set of senders Θ0

q ∪Θt
q(M

′
t).

The sequentially rational actions for T (m̂) are

X̂(T (m̂), t) = X(m̂, t)

X̂(T (m̂), l) = X(m̂, l)

X̂(T (m̂), u) = x∗u(X(m̂, t), X(m̂, l)) > µ (185)

For each m ∈M ′t , The sequentially rational actions for T (m) are

X̂(T (m), t) = X(m̂, t)

X̂(T (m), l) = X(m, l)

X̂(T (m), u) = x∗u(X(m̂, t), X(m, l)) > x∗u(X(m, t), X(m, l)) > µ (186)

where the first inequality of (215) holds because X(m̂, t) > X(m, t). The sequentially rational action

for the modified uninspected message m0
q̂ is

X̂(m0
q̂ , u) = X(m0

q , u) +
1

Pr(Θ0
q) + Pr(Θt

q(M
′
t))

∫
M ′t

(X(m, t)−X(m0
q , u))

∫
Θtq(m)

dF (θ)dm
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< X(m0
q , u) +

Pr(Θt
q(M

′
t))

Pr(Θ0
q) + Pr(Θt

q(M
′
t))

(187)

where the inequality holds because X(m, t)−X(m0
q , u) ∈ (0, 1). In the original mechanism, wq(m) =

w−(X(m, t) − X(m, l)) hold almost everywhere for unmodified message m ∈ M+
q /(M

′
t ∪ m̂). For

the modified message, (178) and (184) imply wq̂(T (m̂)) == w−(X(m̂, t) −X(m̂, l)) and wq̂(T (m)) =

w−(X(m̂, t)−X(m, t)), so

wq̂(m) = w−(X̂(m, t)− X̂(m, l)) (188)

hold almost everywhere at M+
q̂ . wq(m) = w−(X(m, t) − X(m, l)) almost everywhere for m ∈ M ′t

implies that Pr(Θt
q(M

′
t)) =

∫
m∈M ′t

1
h(X(m,t)−X(m,l))

∫
Θlq(m) dF (θ)dm, combined with (183) means

Pr(Θt
q(M

′
t)) =

∫
m∈M ′t

1
h(X(m,t)−X(m,l))

∫
Θlq(m) dF (θ)dm∫

m∈M ′t
1

h(X(m̂,t)−X(m,l))

∫
Θlq(m) dF (θ)dm

b̂ ∈ (h(1)b̂, b̂) (189)

where the upper bound holds because X(m̂, t) > X(m, t) and h(.) is a decreasing function, the lower

bound holds because wq(m) > 0.5 means h(X(m, t)−X(m, l)) < 1 and h(X(m̂, t)−X(m, l)) > h(1).

To compare DM’s payoffs,

EU IDM (Ω̂)− EU IDM (Ω)

=(Pr(Θ0
q) + Pr(Θt

q(M
′
t)))E[Θ0

q̂ ]
2

− Pr(Θ0
q)µ

2 −
∫
M ′t

(X(m, t)2 − c)
∫

Θtq(m)
dF (θ)dm

=− Pr(Θ0
q)(E[Θ0

q̂ ]− µ)2 +

∫
M ′t

c− (X(m, t)− E[Θ0
q̂ ])

2

∫
Θtq(m)

dF (θ)dm

>− Pr(Θ0
q)(

Pr(Θt
q(M

′
t))

Pr(Θ0
q) + Pr(Θt

q(M
′
t))

)2 + Pr(Θt
q(M

′
t))δ (190)

where the second equality holds by sequential rational actions ; the inequality holds because of (187),

(180) and (181). Since Vq(m) = Vq̂(m) = c, by Lemma 4, EUDM (Ω̂) = EUUDM (Ω̂) = EU IDM (Ω̂), and

(187) implies that X̂(m0
q̂ , u)−X(m0

q , u) <
Pr(Θtq(M

′
t))

Pr(Θ0
q)+Pr(Θ

t
q(M

′
t))

, so Lemma 5 implies that there exists an

incentive compatible mechanism Ω̃ such that EU IDM (Ω̃) > EU IDM (Ω̂) − 4(
Pr(Θtq(M

′
t))

Pr(Θ0
q)+Pr(Θ

t
q(M

′
t))

)2, then

by (216) EU IDM (Ω̃) − EU IDM (Ω) > Pr(Θt
q(M

′
t))δ − [4 + Pr(Θ0

q)](
Pr(Θtq(M

′
t))

Pr(Θ0
q)+Pr(Θ

t
q(M

′
t))

)2, and by (189),

EU IDM (Ω̃)− EU IDM (Ω) = k(b̂)b̂, where limb̂→0 k(b̂) > h(1)δ > 0.

�

Lemma 13 Suppose for an optimal mechanism Ω, Pr(Θ0
q) > 0 and µ − θl > θt − µ, then for almost

every θ ∈ Θu
q (M+

q ), θ is essentially revealed upon inspection in Ω, and for almost every m ∈M+
q and

s = t, l, Θs
q(m) = {X(m, s)}.
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Proof of Lemma 13: We will show that for almost every lying types θ ∈ Θl
q(M+

q ), θ is essentially

revealed upon inspection in Ω, the proof for truthful types is symmetrical and omitted.

Suppose on the contrary, there exist a positive measure set Θl ⊆ Θl
q(M+

q ) such that for any θ ∈ Θl,

xdΩ(θ) = X(mq(θ), l) 6= θ. Let Θ′l = {θ ∈ Θt : X(mq(θ), l) > θ}. Since X(.) satisfies (5), Θ′l must have

positive measure. For any m ∈ mq(Θ
′
l),Lemma 10 implies wq(m) < 0.5, so there exist δ > 0 and a

positive measure subset Θ′′l ⊆ Θ′t such that for any θ ∈ Θ′′l and m ∈ mq(Θ
′′
l ),

X(m, t) > inf
m′∈M+

q

X(m′, t) (191)

θ < xdΩ(θ)− δ (192)

X(m,u) > µ+ δ (193)

wq(m) < 0.5− δ (194)

Denote a =
Pr(Θ′′l )

Pr(Θlq(mq(Θ
′′
l )))

> 0, and let Ma
l = ∩M ⊆ mq(Θ

′′
l ) :

Pr(Θ′′l ∩Θlq(M))

Pr(Θlq(M))
≥ a be the subset

containing every message in mq(Θ
′′
t ) where proportion of truthful types within Θ′′l is no less than

a. Since Pr(Ma
l ) > 0, for any ε > 0 there is positive measure subset M ′ ⊆ Ma

l such that for any

m,m′ ∈M ′ and s ∈ {t, l, u},

|X(m, s)−X(m′, s)| < ε (195)

and Pr(M ′) ≤ ε Denote b = Pr(M ′) ≡ Pr(Θu
q (M ′)). Let Θ′ = Θl

q(M
′) ∩Θ′′l be the set of lying types

in M ′ that satisfies (192). Since M ′ ⊆Ma
l , we have

Pr(Θ′) ≥ aPr(Θl
q(M

′)) (196)

Let Θl = Θl
q(M

′), Θt = Θt
q(M

′) and Θu = Θl ∪ Θt be the aggregate set of truth-tellers, liars and

senders of M ′; Θex = Θl
q(M

′)/Θ′ be the set of liars excluding those in Θ′; Eu = E[Θu], Et = E[Θt],

El = E[Θl], E′ = E[Θ′] and Eex = E[Θex] be their corresponding expected values, so that

El =
z′E′ + zexEex

z′ + zex
(197)

and zt = Pr(Θt)
b , zl = Pr(Θl)

b = 1 − zt, z′ = Pr(Θ′)
b and zex = Pr(Θex)

b be their corresponding ratios of

measure to set of senders Θu. Since Θ′ ⊆ Θ′′l and M ′ ∈Ma
l ,

Et > inf
m′∈M+

q

X(m′, t) (198)

E′ + δ > El > Eex (199)
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z′ ≥ azl (200)

Since the original mechanism is optimal, we have (X(m, t) − X(m,u))(X(m,u) − X(m, l)) = c and

wq(m) = w−(X(m, t)−X(m, l)) ≤ 0.5 almost everywhere at M ′, so |Es−X(m, s)| < ε for any m ∈M ′

and s = t, l, u and (194) imply

|(1− zt)zt(Et − El)2 − c| ≡ |(Et − Eu)(Eu − El)− c| < 4ε2 (201)

zt > 0.5 + δ (202)

Therefore zl = 1− zt ∈ (1
2 −

√
1
4 −

c+4ε2

(Et−El)2 ,
1
2 −

√
1
4 −

c−4ε2

(Et−El)2 ), so

zt

zl
=

1− w−(Et − El)
w−(Et − El)

+ k1(ε)ε2 = J(Et − El) + k1(ε)ε2 (203)

where J(.) = 1
h(.) is the required truth-teller to liar ratio, and k1(ε) is a bounded function.

For any ε ∈ [0, 1], let El(ε) = zltEl−εzexEex
zl−εzex be the expected value of the set (Θl

q(M
′)/Θex,ε), where

Θex,ε is a set with expected value Eex and measure εPr(Θex).

Since El = zex
zl
εEex + (1− zex

zl
ε)El(ε), by second order taylor expansion, J(Et−El) = J(Et−El(ε)) +

J ′(Et − El(ε)) zex
zl

(El(ε)− Eex)ε+ J ′′(Et − Ẽ)( zex
zl

(El(ε)− Eex)ε)2, where Ẽ ∈ [Eex, E
l(ε)]. Then

(1− zex
zl
ε)J(Et − El(ε)) +

zex
zt
εJ(Et − Eex)− J(Et − El)

=J(Et − El(ε)) +
zex
zl
ε[J(Et − Eex)− J(Et − El(ε))]− J(Et − El)

=
zex
zt
ε[J(Et − Eex)− J(Et − El(ε))− (El(ε)− Eex)J ′(Et − El(ε))]

− J ′′(Et − Ẽ)(
zex
zt

(Eex)− El(ε))ε)2

≡− k2(ε)ε (204)

where limε→0 k2(ε) > 0 because J(.) is strictly concave and Eex < El ≈ El(ε)), so J(Et − Eex) −

J(Et−El(ε))− (Eex)−El(ε))J ′(Et−El(ε)) is negative and bound away from 0. Therefore, (203) and

(204) imply

(zl − zexε)J(Et − El(ε)) = zlJ(Et − El)− zexεJ(Et − Eex)− zlk2(ε)ε

= zt − zexεJ(Et − Eex)− zlε[k2(ε)− k1(ε)ε] (205)

Now let Θl
ex,ε = Θex(ε) be the set of liars for the modified lower message, where Θex(ε) is a mean-

preserving division of Θex so that

Pr(Θl
ex,ε) = εPr(Θex) = εzexb (206)
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E[Θl
ex,ε] = Eex (207)

Let ztex = J(Et − Eex)εzex be the required share of truth-tellers for the modified lower message,

and Θt
ex,ε = Θt( z

t
ex
zt ) be the set of truth-tellers for the modified lower message, where Θt( z

t
ex
zt ) is a

mean-preserving division of Θt so that

Pr(Θt
ex,ε) =

ztex
zt
Pr(Θt) = J(Et − Eex)εzexb (208)

E[Θt
ex,ε] = Et (209)

Let Θ̂l = (Θl/(Θex/Θex,ε) be the set of liars for the modified upper message, so that

Pr(Θ̂l) = (1− ε)Pr(Θex) + Pr(Θ′) = [zl − εzex)]b (210)

E[Θ̂] =
zlEl − εzexEex

zl − εzex
= El(ε) (211)

Let Θ̂t = Θt/Θt
ex,ε be the set of truth-tellers for the modified upper message, which is the residual

from Θt
ex,ε so that

Pr(Θ̂t) = (zt − J(Et − Eex)εzex)b (212)

E[Θt
ex,ε] = Et (213)

Now define the modified message and action rules q̂, X̂ where other things remain unchanged, except

the set of messages M ′ is off-path; an lower inspected message mex is added with the set of truthful

senders Θt
q̂(mex) = Θt

ex,ε, and the set of lying senders Θl
q̂(mex) = Θl

ex,ε; an upper inspected message

m̂ is added with the set of truthful senders Θt
q̂(m̂) = Θ̂t, and the set of lying senders Θl

q̂(m̂) = Θ̂l.

The sequentially rational actions for the message mex are

X̂(mex, t) = Et

X̂(mex, l) = Eex

X̂(mex, u) = x∗u(Et, Eex) > x∗u(Et, El) > µ (214)

The sequentially rational actions for the message m̂ are

X̂(m̂, t) = Et

X̂(m̂, l) = El(ε)

x∗u(Et, El(ε)) ≈ x∗u(Et, El) > µ (215)
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where the approximation of (215) holds as ε→ 0, and the inequality holds by (193).

To compare DM’s payoffs,

EU IDM (Ω̂)− EU IDM (Ω)

=εzexb(E
2
ex − c) + (zl − εzex)b(El(ε)2 − c) + ztb((Et)2 − c)

−
∑
s=t,l

∫
M ′
X(m, s)2 − c

∫
Θsq(m)

dF (θ)dm

=εzexb(Eex − El)2 + (zl − εzex)b(El − El(ε))2

−
∑
s=t,l

∫
M ′

(X(m, s)− Es)2

∫
Θsq(m)

dF (θ)dm

>εzexb(Eex − El)2 + (zl − εzex)b(El − El(ε))2 − 1

4
ε2b (216)

where the second equality holds by sequential rational actions ; the inequality holds because of (195)

and Popoviciu’s inequality. By definition of ztex and J(.), wq̂(mex) = w−(Et − Eex). Now For m̂,

hq̂(m̂) =
Pr(Θ̂l)

Pr(Θ̂t)
=

zl − zexε
zt − J(Et − Eex)zexε

=
zl − zexε

(zl − zexε)J(Et − El(ε)) + zlε[k2(ε)− k1(ε)ε]
(217)

and since h(Et − El(ε))− 1
J(Et−El(ε)) ,

b̂ ≡ (1−
hq̂(m̂))

h(Et − El(ε))
)Pr(Θ̂t) = hq(m̂)

zl

zl − zexε
(zt − J(Et − El(ε))zexε)b(k2(ε)− k1(ε)ε)ε

≈ h(Et − El)ztk2(ε)εb (218)

for small ε. Since limε→0 b̂ = 0, so Lemma 12, (198) and (215) imply that for small enough ε there

exists an incentive compatible mechanism Ω̃ such that EU IDM (Ω̃) > EU IDM (Ω̂) > kb̂b̂ > 0, and thus

for EUDM (Ω̃)−EUDM (Ω) > 0 for small enough ε, but it contradicts that Ω is an optimal mechanism.

Therefore, we have shown that for almost every θ ∈ Θu
q (M+

q ), θ is essentially revealed upon inspection

in an optimal mechanism Ω.

Finally, suppose there is a positive measure set M ′ ⊆ M+
q ) and s = t, l such that for m ∈ M ′,

Θs
q(m) 6= {X(m, s)}, then there is a positive measure set Θ′ such that mq(θ) 6= θ, which contradicts

that θ is essentially revealed upon inspection.

�
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Lemma 13 implies in an optimal mechanism where Pr(Θ0
q) > 0 and µ−θl > θt−µ, every inspected

type is separated upon inspection, so there exists an matching function from the set of truth-tellers to

the set of liars φq : Θt
q(M+

q )→ Θl
q(M+

q ) such that for mq(θ) = mq(θ
′) if and only if φq(θ) = θ′.

Lemma 14 Suppose for an optimal mechanism Ω, Pr(Θ0
q) > 0 and µ− θl > θt−µ, then (θt−µ)(µ−

θ
l
) ≥ c and for any m1,m2 ∈M+

q , X(m1, t) > X(m2, t) if and only if X(m1, l) < X(m2, l).

Proof of Lemma 14: We consider two cases that contrary to the claim.

Case 1: (θt − µ)(µ − θl) ≥ c and there exists positive measure sets M1,M2 ⊆ M+
q such

that M1 ∩M2 = ∅ and for all (m1,m2) ∈ (M1,M2), X(m1, t) ≥ X(m2, t) and X(m1, l) ≥ X(m2, l):

By Lemma 13 every inspected types is separating, then for m1 6= m2 and s = t, l, X(m1, s) 6=

X(m2, s), so it must be the case that for any (m1,m2) ∈ (M1,M2) X(m1, t) > X(m2, t) and X(m1, l) >

X(m2, l). Therefore, there exist δ > 0 such that for any ε > 0 there are positive measure subsets

M ′1 ⊆M1 and M ′2 ⊆M2 such that for any mi ∈M ′i , i = 1, 2 and s = t, l,

X(m1, s) > X(m2, s) > δ for (m1,m2) ∈ (M1,M2) (219)

|X(m, s)−X(m′, s)| < ε for m,m′ ∈Mi, i = 1, 2 (220)

X(m2, t) > inf
m′∈M+

q

X(m′, t) (221)

and 1
rPr(M

′
2) = Pr(M ′1) ≤ ε for any r ∈ (0, 1). Denote b = Pr(M ′1). For i ∈ 1, 2 and s ∈ t, l, u,

let Θs
i = Θs

q(M
′
i) be the aggregate sets of truthful senders, lying senders and senders of M ′′i , and

Esi = E[Θs
i ] be their corresponding expected value and zsi =

Pr(Θsi )
Pr(Θui ) be their corresponding ratios of

measure to set of senders Θu
i .

Since the original mechanism is optimal, we have (X(m, t) − X(m,u))(X(m,u) − X(m, l)) = c and

wq(m) = w−(X(m, t)−X(m, l)) ≤ 0.5 almost everywhere at M ′i , so |Es−X(m, s)| < ε for any m ∈M ′

and s = t, l and implies

zli
zti

=
w−(Eti − Eli)

1− w−(Eti − Eli)
+ k1(ε)ε2 = h(Eti − Eli) + ki(ε)ε

2 (222)

where ki(ε) is a bounded function. Define r̂ =
zt1
zl2
h(Et1 − El2), and take the sets M1,M2 such that

Pr(M ′2) = r̂P r(M ′1), so that

Pr(Θl
2)

Pr(Θt
1)

=
r̂zl2
zt1

= h(Et1 − El2) (223)
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Now define the modified message and action rules q̂, X̂ where other things remain unchanged,

except the set of messages M ′1 ∪M ′2 is off-path; an inspected message mex is added with the set of

truthful senders Θt
q̂(mex) = Θt

1, and the set of lying senders Θl
q̂(mex) = Θ′2; an inspected message m̂

is added with the set of truthful senders Θt
q̂(m̂) = Θt

2, and the set of lying senders Θl
q̂(m̂) = Θt

1.

The sequentially rational actions for the lower modified message mex are

X̂(mex, t) = Et1

X̂(mex, l) = El2

X̂(mex, u) = x∗u(Et1, E
l
2) > x∗u(Et1, E

l
1) > µ (224)

The sequentially rational actions for the upper modified message m̂ are

X̂(m̂, t) = Et2

X̂(m̂, l) = El1

x∗u(Et, El(ε)) = x∗u(Et2, E
l
1) > µ (225)

where the inequality holds because (Et2 − µ)(µ− El1) > (θt − µ)(µ− θl) ≥ c.

To compare DM’s payoffs,

EU IDM (Ω̂)− EU IDM (Ω)

=b
∑
s=t,l

[(zs1)2 − c] + r̂b
∑
s=t,l

[(zs2)2 − c]

−
∑
i=1,2

∑
s=t,l

∫
M ′i

[X(m, s)2 − c]
∫

Θsq(m)
dF (θ)dm

=−
∑
i=1,2

∑
s=t,l

∫
M ′

(X(m, s)− Esi )2

∫
Θsq(m)

dF (θ)dm

>− (1 + r̂)
1

4
ε2b (226)

where the second equality holds by sequential rational actions ; the inequality holds because of (220)

and Popoviciu’s inequality. By (223), wq̂(mex) = w−(Et1 − El2). Now For m̂,

hq̂(m̂) =
Pr(Θl

1)

Pr(Θt
2)

=
zl1
r̂zt2

=
zl1z

l
2

zt1z
t
2

1

h(Et1 − El2)
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=
h(Et1 − El1)h(Et2 − El2)

h(Et1 − El2)
+ g(ε)ε2 (227)

where the second equality holds by definition of r̂, and the last equality holds by (222), where g(ε)

is a bounded function. Since h(.) is a strictly convex function and Et1 − El2 − δ > maxiE
t
i − Eli ≥

miniE
t
i − Eli > Et2 − El1 + δ,

b̂ ≡ (1−
hq̂(m̂)

h(Et2 − El1)
)Pr(Θt

2)

≈ (1− h(Et1 − El1)h(Et2 − El2)

h(Et1 − El2)h(Et2 − El1)
)r̂zt2b (228)

for small ε. Since limε→0 b = 0, so Lemma 12, (221) and (225) imply that for small enough ε there

exists an incentive compatible mechanism Ω̃ such that EU IDM (Ω̃) > EU IDM (Ω̂) > kb̂b̂ > 0, and thus

for EUDM (Ω̃)−EUDM (Ω) > 0 for small enough ε, but it contradicts that Ω is an optimal mechanism.

Case 2: (θt − µ)(µ− θl) < c :

Then there exists positive measure Θl ⊆ Θl
q(M+

q ) such that for any θ ∈ Θl, (θt − µ)(µ − θ) < c.

Incentive compatibility implies (φ−1(θ) − µ)(µ − θ) > c, where φ−1(θ) is the truth-teller who match

with θ, then there exists δ1 > 0 and positive measure subset Θl
i ⊆ Θl such that for all θ ∈ Θl

i,

(φ−1(θ)− δ1− µ)(µ− θ) > c. Now for each θ ∈ Θl
i, define R(θ) be such that (R(θ)− µ)(µ− θ) = c, So

we have

θt < R(θ) < φ−1(θ)− δ1 (229)

By Lemma 9, R(θ) > θt ≥ θ0
, so R(θ) ∈ Θt

q(M+
q ). Let Θl

ii = {θ ∈ Θl
i : R(θ) 6∈ φ−1(Θ′l)} to remove any

liars type with R(θ) duplicate with φ−1(θ′) for other types in Θl
i. Second inequality of (229) implies that

Θl
ii has positive surplus. Incentive compatibility implies (R(θ)− µ)(µ− φ(R(θ))) > c, so there exists

δ2 > 0 and positive measure subset Θl
iii ⊆ Θl

ii such that for all θ ∈ Θl
iii, (R(θ)−µ)(µ−φ(R(θ))+δ2) > c,

So we have

φ(R(θ)) < θ − δ2 (230)

let δ = min{δ1, δ2}, and pick a positive measure subset Θl
iv ⊆ Θl

iii such that for any θ, θ′ ∈ Θl
iv,

max{|θ − θ′|, |R(θ) − R(θ′)|, |φ−1(Θl) − φ−1(Θ′l)|, |φ(R(θ)) − φ(R(θ′))|} < ε δ4 , so that by (229) and

(230), for any θ, θ′ ∈ Θl
iv ,

R(θ′) < φ−1(θ)− δ

2
(231)
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φ(R(θ′)) < θ − δ

2
(232)

Now let M1 = mq(Θ
l
iv) and M2 = mq(R(Θl

iv)), so for every (m1,m2) ∈ (M1,M2),

X(m2, t) < X(m1, t)−
δ

2
(233)

X(m2, l) < X(m1, l)−
δ

2
(234)

and for θ ∈ Θl
q(M1) there exists θ′ ∈ Θt

q(M2) such that

(θ′ − µ)(µ− θ) = c (235)

Now for i = 1, 2, s = t, l, let Θs
i = Θs

q(Mi) be the truthful and lying sets, and for ε ∈ (0, 1),

θsi (ε) = {θ ∈ Θs
i : Pr(Θs

i ∩ [0, θ]) = εPr(Θs
i )} be the ε − th percentile of Θs

i . Define M1(ε) =

mq(Θ
l
1∩[0, θl1(ε2)]) be the subset of messages of M1 where the liars are on the bottom ε2−th percentile,

and M2(ε) = mq(Θ
t
2 ∩ [0, θl1(1 − ε2)]) be the subset of messages of M2 where the truth-tellers are on

the top ε2 − th percentile, so that for small enough ε,

|X(m, s)−X(m′, s)| < ε for m,m′ ∈Mi(ε), i = 1, 2 (236)

X(m2, t) > inf
m′∈M+

q

X(m′, t) (237)

(Et2(ε)− µ)(µ− El1(ε)) > c (238)

where Esi (ε) = E[Θs
q(Mi(ε))], which implies X∗u(Et2(ε), El1(ε)) > µ. Then we can derive a contradiction

using the same argument as Case 1.

�

Lemma 15 Suppose for an optimal mechanism Ω, Pr(Θ0
q) > 0 and θt − µ ≥ µ− θl, then θ

l ≤ θ0.

Proof of Lemma 15: Suppose contrary to the claim, θ
l
> θ0, then it must be the case that µ−θl ≤

√
c,

for otherwise Lemma 9 and Θt
q(M+

q )∪Θt
q(M+

q )∪Θ0
q = [0, 1] imply that θt = θ

0
, thus (θ

0−µ)(µ−θ0) =

(θt − µ)(µ− θ0) > (θt − µ)(µ− θl) > c, which contradicts Lemma 8.

Now since θ
l
> θ0, there exist δ > 0, a positive measure subset of uninspected types Θ0 ⊆ Θ0

q and

a positive set of lying types Θl ⊆ Θl
q(M+

q ) such that for any θ ∈ Θl, µ ≡ E[Θ0] and m ∈ mq(Θl)

θ − µ > δ (239)

θ ≥ xdΩ(θl) (240)
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X(m,u) > µ+ δ (241)

X(m, l) < µ− δ (242)

wq(m) < 0.5− δ (243)

Let Ml = mq(Θl) be the set of messages sent by those lying types, a = Pr(Θl)
Pr(Θlq(Ml))

> 0, and Ma
l =

∩M ⊆Ml :
Pr(Θl∩Θlq(M))

Pr(Θlq(M))
≥ a be the subset containing every message in Ml where proportion of lying

types within Θl is no less than a. Since Pr(Ma
t ) > 0, for any ε > 0 there is positive measure subset

M ′ ⊆Ma
t such that for any m,m′ ∈M ′ and s ∈ {t, l, u} and θ ∈ Θl ∩Θl

q(M
a
l ),

|X(m, s)−X(m′, s)| < ε (244)

θ > µ−
√
c− ε (245)

and Pr(M ′) ≡ b ≤ ε.

For s ∈ {t, l, u}, let Θs = Θs
q(M

′), Es[Θs] and zs = Pr(Θs)
b be the aggregate set of truth-tellers, liars

and senders of M ′, their corresponding expected values and ratios of measure to set of senders Θu.

Let Θ′ = Θl
q(M

′) ∩Θl be the set of lying types in M ′ that satisfies (239) and (240), and Θex = Θl/Θ′

be the set of lying types who send M ′ but not in Θ′; E′ = E[Θ′], Eex = E[Θex], z′ = Pr(Θ′)
b and

zex = Pr(Θex)
b be their corresponding expected values and ratios of measure to set of senders Θu. By

(239), (240), (245) and M ′ ⊆Ma
l ,

E′ > µ+ δ (246)

E′ ≥ El ≥ Eex (247)

E′ ≥ µ−
√
c− ε (248)

z′ ≥ azl (249)

Since the original mechanism is optimal, we have (X(m, t) − X(m,u))(X(m,u) − X(m, l)) = c and

wq(m) = w−(X(m, t)−X(m, l)) ≤ 0.5 almost everywhere at M ′, so |Es−X(m, s)| < ε for any m ∈M ′

and s = t, l, u imply

zl

zt
=

w−(Et − El)
1− w−(Et − El)

+ k1(ε)ε2 = h(Et − El) + k1(ε)ε2 (250)

zt

zl
=

1− w−(Et − El)
w−(Et − El)

+ k1(ε)ε2 = J(Et − El) + k2(ε)ε2 (251)

where k1(ε) and k2(ε) are bounded functions.
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Now we consider two cases.

Cases 1: limε→0E
′ − El = 0:

Let r̂ = h(Et − µ) z
t

zl
. Since limε→0E

l − µ = limε→0E
′ − µ > δ > 0 and h′(.) < 0, (250) imply that

limε→0r̂ = limε→0

h(Et − µ)

h(Et − El)
∈ (0, 1) (252)

Let Θ̂l = Θ0(r̂zlb 1
Pr(Θ0)) be the modified set of liars, where Θ0(r̂zlb 1

Pr(Θ0)) is a mean-preserving

division of Θ0 so that

Pr(Θ̂l) = r̂zlb = r̂P r(Θl) (253)

E[Θ̂l] = µ (254)

Let Θ0
q̂ = (Θ0

q/Θ̂
l) ∪Θl be the modified uninspected set.

Now define the modified message ans action rules q̂, X̂ where other things remain unchanged, except

the set of messages M ′ is off-path; an inspected message m̂ is added with the set of truthful senders

Θt
q̂(m̂) = Θt and the set of lying senders Θl

q̂(m̂) = Θ̂l; The uninspected message is modified to m0
q̂

with the set of senders Θ0
q̂ .

The sequentially rational actions for m̂ are

X̂(m̂, t) = Et

X̂(m̂, l) = µ

X̂(m̂, t) = x∗u(Et, µ) > x∗u(Et, El) > µ (255)

where the first inequality holds for small enough ε because limε→0E
l−µ > 0, and the second inequality

holds by optimality of Ω.

The sequentially rational action for the modified uninspected message m0
q̂ is

X̂(m0
q̂ , u) = µ+

r̂zlb

Pr(Θ0
q) + (1− r̂)zlb

(µ− µ)− zlb

Pr(Θ0
q) + (1− r̂)zlb

(µ− El)

= µ+ k3(ε)b (256)

where k3(ε) is a bounded function.

By (253) and the definition of r̂, Pr(Θ̂l) = h(Et − µ)Pr(Θt), so wq̂(m̂) = w−(Et − µ) =

w−(X̂(m̂, t)− X̂(m̂, l)), so

wq̂(m) = w−(X̂(m, t)− X̂(m, l)) (257)

70



hold almost everywhere at M+
q̂ .

To compare DM’s payoffs, since Vq(m) = Vq̂(m) = c, by Lemma 4, EUDM (Ω) = EU IDM (Ω) and

EUDM (Ω̂) = EU IDM (Ω̂), so

EUDM (Ω̂)− EUDM (Ω)

=(Pr(Θ0
q) + (1− r̂)zlb)E[Θ0

q̂ ]
2 + r̂zlb[µ2 − c] + ztb[(Et)2 − c]

− Pr(Θ0
q)µ

2 −
∑
s=t,l

∫
M ′

(X(m, s)2 − c)
∫

Θsq(m)
dF (θ)dm

=− Pr(Θ0
q)(µ− E[Θ0

q̂ ])
2 + r̂zlb[(E[Θ0

q̂ ]− µ)2 − c]− zlb[(E[Θ0
q̂ ]− El)2 − c]

−
∑
s=t,l

∫
M ′

(X(m, s)− Es)2

∫
Θsq(m)

dF (θ)dm

>− Pr(Θ0
q)k3(ε)2b2 − (1− r̂)zlb[(E[Θ0

q̂ ]− El)2 − c]

+ r̂zlb[(E[Θ0
q̂ ]− µ)2 − (E[Θ0

q̂ ]− El)2]− 1

4
ε2b

>− Pr(Θ0
q)k3(ε)2b2 − (1− r̂)zlb[(E[Θ0

q̂ ]− El)2 − c]

+ r̂zlb(El − µ)2 − 1

4
ε2b

>r̂zlbδ2 − k4(ε)εb (258)

where the second equality holds by sequential rational actions ; the first inequality holds because of

(256), (244) and Popoviciu’s inequality; the last inequality holds for small enough ε and a bounded

function k4(ε) because b ≤ ε, so Pr(Θ0
q)k3(ε)2b2 ≤ Pr(Θ0

q)k3(ε)2εb; (248) implies limε→0(E[Θ0
q̂ ]−El)2−

c = limε→0(µ− E′)2 − c ≤ 0, and (246) implies limε→0(El − µ)2 = limε→0(E′ − µ)2 > δ2.

Since Vq(m) = Vq̂(m) = c, by Lemma 4, EUDM (Ω̂) = EUUDM (Ω̂) = EU IDM (Ω̂), and (256) implies

that X̂(m0
q̂ , u) − X(m0

q , u) < k3(ε)b, so Lemma 5 implies that there exists an incentive compatible

mechanism Ω̃ such that EUDM (Ω̃) > EUDM (Ω̂)− 4(k3(ε)b)2, then by (258) EUDM (Ω̃)−EUDM (Ω) >

r̂zlbδ2−k4(ε)εb−4(k3(ε)b)2 > 0 for small enough ε, but it contradicts that Ω is an optimal mechanism.

Case 2:limε→0E
′ − El > 0 :

For r ∈ [0, 1], define El1(r) = El + rε
1
3 (E′ − Eex) and El2(r) = El − rε

1
3 (E′ − Eex)− ε(E′ − µ).

Define r̂ ∈ (0, 1) that solves

J(Et − El1(r)) + J(Et − El2(r)) = 2
zt

zl
(259)

To show that such solution exists for small enough ε, El1(0) = El and El2(0) = El− ε(E′−µ) < El, by
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(246) and (251),

lim
ε→0

1

ε
[J(Et − El1(0)) + J(Et − El2(0))− 2

zt

zl
]

= lim
ε→0

1

ε
[J(Et − El) + J(Et − El + ε(E′ − µ))− 2(J(Et − El) + k2(ε)ε2)]

=J ′(Et − El)(E′ − µ) > J ′(Et − El)δ > 0 (260)

On the other side, J(Et−El1(1)) = J(Et−El)−J ′(Et−El)(ε
1
3 (E′−Eex))+J ′′(Et−Ẽ1)(ε

1
3 (E′−Eex))2

and J(Et−E2
1(1)) = J(Et−El) +J ′(Et−El)(ε

1
3 (E′−Eex) + ε(E′− ε)) +J ′′(Et− Ẽ2)(ε

1
3 (E′−Eex) +

ε(E′ − ε))2, where El1(1) > Ẽ1 > El > Ẽ2 > E2
1(1) . Therefore, J(Et − El1(1)) + J(Et − El2(1)) =

2J(Et−El)+J ′(Et−El)ε(E′−ε)+J ′′(Et−Ẽ1)(ε
1
3 (E′−Eex))2+J ′′(Et−Ẽ2)(ε

1
3 (E′−Eex)+ε(E′−ε))2,

thus

lim
ε→0

1

ε
2
3

[J(Et − El1(1)) + J(Et − El2(1))− 2
zt

zl
]

= lim
ε→0

1

ε
2
3

[J(Et − El1(1)) + J(Et − El2(1))− 2(J(Et − El) + k2(ε)ε2)]

=h′′(Et − El)(E′ − Eex)2 > 0 (261)

where the inequality holds because J(.) is strictly concave and E′ −Eex > E′ −El > 0, thus for small

enough ε > 0, there exists r̂ ∈ (0, 1) such that (259) is satisfied.

Divide Θex into two mean-preserving divisions Θex,1 and Θex,2 so that E[Θex,1] = E[Θex,2] =

Eex, Pr(Θex,1) = 1
2 [Pr(Θex) − zlbr̂ε

1
3 ] and Pr(Θex,2) = 1

2 [Pr(Θex) + zlbr̂ε
1
3 ]; Divide Θ′ into three

mean-preserving divisions Θ′0, Θ′1 and Θ′2 so that E[Θ′0] = E[Θ′1] = E[Θ′2] = E′, Pr(Θ′0) = 1
2z
lbε,

Pr(Θ′1) = 1
2 [Pr(Θ′) + zlbr̂ε

1
3 ] and Pr(Θ′2) = 1

2 [Pr(Θ′) − zlbr̂ε
1
3 − zlbε]; Divide Θt into two mean-

preserving divisions Θ̂t
1 and Θ̂t

2 so that E[Θ̂t
1] = E[Θ̂t

2] = Et, Pr(Θ̂t
1) = 1

2J(Et − El1(r̂))Pr(Θl) and

Pr(Θ̂t
2) = 1

2J(Et−El2(r̂))Pr(Θl); Divide a mean-preserving set Θ0,2 from Θ0 so that E[Θ0,2] = µ and

Pr(Θ0,2) = 1
2z
lbε.

Let Θ̂l
1 = Θex,1 ∪Θ′1 be the set of liars for the modified upper message, so that

Pr(Θ̂l
1) =

1

2
[Pr(Θex)− zlbr̂ε

1
3 ] +

1

2
[Pr(Θ′) + zlbr̂ε

1
3 ]

=
1

2
zlb (262)

E[Θ̂l
1] =

Eex[Pr(Θex)− zlbr̂ε
1
3 ] + E′[Pr(Θ′) + zlbr̂ε

1
3 ]

zlb

= El + r̂ε
1
3 (E′ − Eex) = El1(r̂) (263)
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Let Θ̂l
2 = Θex,2 ∪Θ′2 ∪Θ0,2 be the set of liars for the modified lower message, so that

Pr(Θ̂l
2) =

1

2
[Pr(Θex) + zlbr̂ε

1
3 ] +

1

2
[Pr(Θ′)− zlbr̂ε

1
3 − zlbε] +

1

2
zlbε

=
1

2
zlb (264)

E[Θ̂l
1] =

Eex[Pr(Θex) + zlbr̂ε
1
3 ] + E′[Pr(Θ′)− zlbr̂ε

1
3 − zlbε] + µzlbε

zlb

= El − r̂ε
1
3 (E′ − Eex)− ε(E′ − µ) = El2(r̂) (265)

Let Θ0
q̂ = (Θ0

q/Θ0,2) ∪Θ′0 be the modified uninspected set.

Now define the modified message ans action rules q̂, X̂ where other things remain unchanged, except

the set of messages M ′ is off-path; an upper inspected message m1 is added with the set of truthful

senders Θt
q̂(m1) = Θ̂t

1 and the set of lying senders Θl
q̂(m1) = Θ̂l

1; an lower inspected message m2 is

added with the set of truthful senders Θt
q̂(m2) = Θ̂t

2 and the set of lying senders Θl
q̂(m2) = Θ̂l

2; The

uninspected message is modified to m0
q̂ with the set of senders Θ0

q̂

The sequentially rational actions for m1 are

X̂(m1, t) = Et

X̂(m1, l) = El1(r̂)

X̂(m1, t) = x∗u(Et, El1(r̂)) ≈ x∗u(Et, El) > µ (266)

where the approximation holds for small enough ε because limε→0E
l
1(r̂) − El = 0, and the second

inequality holds by optimality of Ω.

The sequentially rational actions for m2 are

X̂(m2, t) = Et

X̂(m2, l) = El2(r̂)

X̂(m2, t) = x∗u(Et, El2(r̂)) > x∗u(Et, El) > µ (267)

The sequentially rational action for the modified uninspected message m0
q̂ is

X̂(m0
q̂ , u) = µ+

εzlb

Pr(Θ0
q)

(E′ − µ) = k5(ε)bε (268)

where k5(ε) is a bounded function. Since for i = 1, 2, Pr(Θ̂t
i) = J(Et − Eli(r̂))Pr(Θ̂l

i), so wq̂(mi) =

w−(Et − Eli(r̂)) = w−(X̂(mi, t)− X̂(mi, l)), so

wq̂(m) = w−(X̂(m, t)− X̂(m, l)) (269)
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hold almost everywhere at M+
q̂ .

To compare DM’s payoffs, since Vq(m) = Vq̂(m) = c, by Lemma 4, EUDM (Ω) = EU IDM (Ω) and

EUDM (Ω̂) = EU IDM (Ω̂), so

EUDM (Ω̂)− EUDM (Ω)

=Pr(Θ0
q)E[Θ0

q̂ ]
2 +

1

2
zlb

∑
i=1,2

[Eli(r̂)
2 − c] + ztb[(Et)2 − c]

− Pr(Θ0
q)µ

2 −
∑
s=t,l

∫
M ′

(X(m, s)2 − c)
∫

Θsq(m)
dF (θ)dm

=− Pr(Θ0
q)(µ− E[Θ0

q̂ ])
2 − 1

2
zlbε(E′ − E[Θ0

q̂ ])
2 +

1

2
zlbε(µ− E[Θ0

q̂ ])
2

+
1

2
zlbr̂ε

1
3

∑
i=1,2

(Eli(r̂)− El)2 +
1

2
zlbε(E′ − El)2 − 1

2
zlbε(µ− El)2

−
∑
s=t,l

∫
M ′

(X(m, s)− Es)2

∫
Θsq(m)

dF (θ)dm

>− Pr(Θ0
q)[k5(ε)bε]2 − 1

2
zlbε(E′ − E[Θ0

q̂ ])
2 +

1

2
zlbε(µ− E[Θ0

q̂ ])
2

+
1

2
zlbr̂ε

1
3

∑
i=1,2

(Eli(r̂)− El)2 +
1

2
zlbε(E′ − El)2 − 1

2
zlbε(µ− El)2 − 1

4
ε2b

>− Pr(Θ0
q)[k5(ε)bε]2 + zlbε(E[Θ0

q̂ ]− El)(E′ − µ)− 1

4
ε2b

>− Pr(Θ0
q)[k5(ε)bε]2 + zlbεδ2 − 1

4
ε2b

>zlbεδ2 − k6(ε)bε2 (270)

where the second equality holds by sequential rational actions ; the first inequality holds because of

(268), (244) and Popoviciu’s inequality; the third inequality holds because (242) and (246) imply that

E[Θ0
q̂ ]− El > µ− El > δ and E′ − µ > δ; the last inequality holds for a bounded function k6(ε).

Since Vq(m) = Vq̂(m) = c, by Lemma 4, EUDM (Ω̂) = EUUDM (Ω̂) = EU IDM (Ω̂), and (268) implies

that X̂(m0
q̂ , u) − X(m0

q , u) < k5(ε)bε, so Lemma 5 implies that there exists an incentive compatible

mechanism Ω̃ such that EUDM (Ω̃) > EUDM (Ω̂)−4(k5(ε)bε)2, then by (258) EUDM (Ω̃)−EUDM (Ω) >

zlbεδ2−k6(ε)bε2−4(k5(ε)bε)2 > 0 for small enough ε, but it contradicts that Ω is an optimal mechanism.

�

Lemma 16 In an optimal mechanism Ω with Pr(Θ0
q) > 0, θ

l
= θ0 and θt = θ

0
. Furthermore, if

θt − µ < µ− θl, then (θt − µ)(µ− θl) = c.
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Proof of Lemma 16: For θt − µ ≥ µ− θl, Lemma 9 and Lemma 15 imply θt ≥ θ
0
> θ0 ≥ θ

l
. Since

Θt
q(M+

q ) ∪Θt
q(M+

q ) ∪Θ0
q = [0, 1], we have θt = θ

0
> θ0 = θ

l
.

For θt − µ < µ − θl, by Lemma 9 µ − θl > θt − µ ≥ θ
0 − µ > 0, so θt = θ

0
and θ

l ≥ θ0. Then

Lemma 8 and Lemma 14 imply (θt − µ)(µ− θl) ≥ c ≥ (θ
0 − µ)(µ− θ0) = (θt − µ)(µ− θ0), so θ

l
= θ0

and (θt − µ)(µ− θl) = c.

�
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